Zahlenangaben inProzent (vonlateinisch-italienischper cento „von Hundert, Hundertstel“)[1] sollen Größenverhältnisse veranschaulichen und vergleichbar machen, indem die Größen zu einem einheitlichen Grundwert (Hundert) ins Verhältnis gesetzt werden. Daher wird das Prozent auch alsHilfsmaßeinheit fürVerhältnisgrößen verwendet.Vor allem ältere Gesetzestexte verwenden den Ausdruck „vom Hundert“[2] (abgekürzt: „vH“ oder „v. H.“); dasDeutsche Institut für Normung empfiehlt jedoch, diesen Ausdruck zu vermeiden.[3]
Prozentangaben werden durch dasProzentzeichen % kenntlich gemacht (zum Beispiel 63,7 %). LautDIN 5008 wird dabei zwischen der Zahl und dem Prozentzeichen einLeerzeichen gesetzt. Eine Prozentangabe kann alsBruch (19 % = 19/100) oder alsDezimalzahl (19 % = 0,19) aufgefasst werden.
Prozentangaben beschreiben Größenverhältnisse und beziehen sich dabei auf einen Grundwert. Der Grundwert ist die Ausgangsgröße, auf die sich derProzentsatz bezieht. DerProzentfuß (auchProzentzahl genannt) gibt an, wie viele Hundertstel des Grundwertes die Prozentangabe beträgt und bezeichnet so ein Größenverhältnis relativ zum Grundwert. Die absolute Bestimmung dieserGröße nennt manProzentwert. Der Prozentwert hat dieselbe Einheit wie der Grundwert.[4]
Es gilt die Grundformel
(1)
also
Das ergibt umgeformt:
(2)
(3)
(4)
(5; Prüfformel)
Beispiel:
Der Begriff „Prozentsatz“ wird in der Literatur unterschiedlich verwendet. Einige Autoren verwenden ihn für den Ausdruck, andere verwenden ihn für denAusdruck.[5] Einige Autoren verwenden um der besseren Unterscheidung willen die BegriffeProzentfuß für den Ausdruck undProzentsatz für den Ausdruck.[6][4]
Für die Übertragung von Texten in Berechnungen ist ein präzises Verständnis erforderlich. Prozentangaben erfüllen die gleiche Funktion wie die Formulierungen „ein Halbes“ oder „ein Viertel“. Dabei bedeutet „ein Halbes“ das Gleiche wie „50 Prozent“ und „ein Viertel“ das Gleiche wie „25 Prozent“. Prozentangaben können darüber hinaus auch feinere Mengenverhältnisse ausdrücken als die in derAlltagssprache gängigen Formulierungen, zum Beispiel „23 Prozent“, was 23 Hundertstel eines Grundwertes entspricht.
Genau wie „ein Halbes“ oder „ein Viertel“ drückt eine Prozentangabe ein Verhältnis zu einemGrundwert aus:ein Halbes von welchem Grundwert? = 50 Prozent von welchem Grundwert?
Hier muss sprachlich zwischen den Ausdrücken „um“ und „auf“ unterschieden werden:
Eine Angabe, dass eine Größeum p Prozent gestiegen ist, entspricht einer Multiplikation mit dem Faktor welcher wiederum als Prozentsatz ausgedrückt werden kann:
Also bedeutet eine Steigerung um beispielsweise fünf Prozent eine Multiplikation mit dem FaktorEine Angabe, dass eine Größeauf p Prozent gestiegen ist, bezieht sich hingegen direkt auf den Faktor, bei also eine Steigerungauf
Analoges gilt für eine Verringerung. Eine Verringerungum p Prozent entspricht einer Multiplikation mit dem Faktor : als Prozentsatz ausgedrückt also
Eine Verringerungum fünf Prozent ist eine Multiplikation mit dem Faktor, also eine Verringerungauf 95 Prozent.
Vergleicht man Prozentwerte, kann man dies inProzentpunkten oder in Prozent vom Ausgangsprozentsatz ausdrücken. Beispiel: Das Wahlergebnis einer Partei steigt von 4 % auf 5 %. Die Partei verbessert sich um einen Prozentpunkt oder um 25 % (auf 125 % des Ausgangsprozentsatzes). Prozentpunkte geben die einfache Differenz zwischen zwei Prozentsätzen an. Wird der Unterschied aber in Prozent (des Ausgangsprozentsatzes) ausgedrückt, dann muss der Ausgangsprozentsatz gedanklich auf 100 % gesetzt werden. Im obigen Beispiel sind 5 % gleich 125 % von 4 %.
Besondere Vorsicht ist bei der Verkettung mehrerer Steigerungen oder Verminderungen geboten. Wird ein Ausgangswert nacheinander um den gleichen Prozentsatz (ungleich Null) erhöht und dann verringert, so ergibt sich keineswegs wieder der Ausgangswert als Ergebnis, sondern einkleinerer Wert, weil sich die zweite Operation auf das Ergebnis der ersten und damit auf einen anderen Grundwert bezieht. Das wird bei Berechnung mittels Faktoren deutlich:
Beispiel: "Wenn 100 Euro zunächst um 10 % erhöht und dann um 10 % verringert wird, so ergibt das:
Es ergeben sich also nur noch 99 Euro. Das gilt wegen der Kommutativität der Multiplikation auch für die umgekehrte Reihenfolge.
Die Prozentrechnung wird je nach Voraussetzungen und Anforderungen auf unterschiedliche Weise ausgeführt und unterrichtet. So können mit Proportionen die üblichen Formeln gewonnen werden, was diese sich zu merken erspart. Beim sogenannten Kopfrechnen wird meist die vermittelnde Frage, was 100 % bzw. 1 % ist (entspricht), gestellt.
Beispiel:
42 kg sind 7 %. Wie viel sind (entsprechen) 100 %? Gegeben sindW (Prozentwert) undp % (Prozentsatz). Gesucht istG (Grundwert).
Ein alltägliches Beispiel ist die Berechnung derUmsatzsteuer. Diese ist definiert durch den Wert eines Produktes (Nettobetrag) multipliziert mit einemUmsatzsteuersatz, der in Prozent angegeben wird. Der Grundwert dieser Prozentangabe ist also der Nettobetrag. Der Bruttobetrag ist die Summe von Nettobetrag und Umsatzsteuer:
Umsatzsteuer = Nettobetrag · Umsatzsteuersatz
Bruttobetrag = Nettobetrag + Umsatzsteuer
Sind 100 Euro der Nettobetrag und der Umsatzsteuersatz beträgt 19 %, so errechnet man die Umsatzsteuer durch:
100 Euro · 19 % = 100 Euro · 0,19 = 19 Euro
Demzufolge errechnet sich der Bruttobetrag folgendermaßen:
Im allgemeinen Sprachgebrauch wird bei Angaben in Zusammenhang mit Prozenten häufig nicht auf die mathematische Definition geachtet, was die Ursache für Ungenauigkeiten und Fehler ist. Beispiele dafür sind:
„Im Rechnungsbetrag sind 19 % Umsatzsteuer enthalten“
bedeutet, dass der Umsatzsteuersatz 19 % beträgt und der Rechnungsbetrag der Bruttobetrag ist, also Nettobetrag plus Umsatzsteuer. Korrekt müsste es daher lauten: „Im Rechnungsbetrag ist die Umsatzsteuer mit einem Umsatzsteuersatz von 19 % enthalten“.
„Die Umsatzsteuer beträgt 19 %“
Falsch, sollte eigentlich heißen „derUmsatzsteuersatz beträgt 19 %“.
„19 % des Rechnungsbetrages sind Umsatzsteuer“
Falsch, da es sich beim Rechnungsbetrag um den Nettowert plus Umsatzsteuer handelt. 19 % von einem Betrag von beispielsweise 119 Euro entsprechen 22,61 Euro. Tatsächlich beträgt die enthaltene Umsatzsteuer hier aber 19 Euro und macht rund 15,97 % des Rechnungsbetrages aus.
Da 19 % und 15,97 % nicht weit auseinander liegen, kann die falsche Formulierung zu unbemerkten Fehlern führen. Deshalb noch folgende Beispiele:
„Mein Taschengeld hat sich um 50 % erhöht.“
Beträgt das Taschengeld nach der Erhöhung insgesamt 15 Euro, so entsprechen 50 % hier 5 Euro. „50 %“ bezieht sich auf den Grundwert 10 Euro. Das ist der Betrag des Taschengeldes vor der Erhöhung.
„50 % meines Taschengeldes sind ein Zuschuss von meiner Oma.“
Beträgt das Taschengeld insgesamt 15 Euro, so entsprechen 50 % hier 7,50 Euro. „50 %“ bezieht sich hier auf den Grundwert 15 Euro. Obwohl der Prozentsatz „50 %“ in beiden Aussagen gleich ist, sind die Prozentwerte „5 Euro“ und „7,50 Euro“ unterschiedlich, da sich die Aussagen auf unterschiedliche Grundwerte beziehen.
10 % Steigung sind 10 m Höhenunterschied auf einer horizontalen Strecke von 100 m. Dies entspricht einem Steigungswinkel von ca. 5,7°.
In der Technik (zum Beispiel Rohrleitung) wird auch dieSteigung (bzw. das Gefälle) in Prozent angegeben. Diese Prozentangabe drückt das Verhältnis von Höhenunterschied und waagerechter Strecke aus. Eine Steigung von 100 % bedeutet demzufolge einen Steigungswinkel von 45°. Eine Steigung von 10 % bedeutet, dass auf einer horizontalen Strecke von 100 m ein Höhenunterschied von 10 m zurückgelegt wird.
ImStraßenverkehr gibt der auf einem Verkehrsschild angegebene Wert nicht die durchschnittliche Steigung des vor einem liegenden steilen Streckenabschnitts an, sondern diemaximale Steigung dieses Streckenabschnitts.
Eine Steigungsangabe in Prozent lässt sich über dieArcustangens-Funktion in eine Winkelangabe (je nach DRG-Einstellung des Taschenrechners inGrad,rad odergon) umrechnen:
Die folgende Tabelle gibt für einige typische Werte für Eisenbahnstrecken (Bereich um 1 %), Gebirgsstraßen (Bereich zwischen 10 % und 30 %), Skipisten (Bereich bis 100 %) sowie zur Illustration einige extreme Werte an.
Zu beachten ist auch, dass Prozentangaben für den Gehalt eines Stoffes als Mengenverhältnis Gramm pro 100 Gramm angegeben werden können, wobei zu spezifizieren und zu differenzieren ist, ob (wie beiLöslichkeitsangaben) Gramm Stoff pro 100 g desLösungsmittels gemeint sind oder Gramm Stoff pro 100 Gramm einerfertigen Lösung (im Sinne einerKonzentrationsangabe) (mehr dazu sieheGehaltsangabe).
Bei Prozentangaben von Stoffgemischen muss angegeben sein, ob sich diese auf denMassenanteil oder denVolumenanteil bezieht. Haben die Stoffe unterschiedlicheDichten, so sind diese beiden Angaben verschieden. Beispielsweise wird bei Getränken der Alkoholanteil inVolumenprozent (% Vol.) angegeben.
DaAlkohol eine geringere Dichte (ca. 0,8 g/cm³) als Wasser (ca. 1 g/cm³) hat, ist der Anteil des Alkohols in Masseprozent geringer als der in Volumenprozent. Beispielsweise beträgt für ein Getränk mit 50 % Vol. Alkohol der Masseanteil des Alkohols lediglich 44,4 % (Masse).
Taschenrechner unterschiedlicher Bauart und Hersteller behandeln die Tastatureingabe einer Prozentrechnung unterschiedlich. Dies kann zu Verwirrungen bzw. dazu führen, dass Benutzer von Taschenrechnern bei Prozentrechnungen auf die Prozenttaste verzichten und eher auf denDreisatz oder auf die obenstehende Formel zurückgreifen.
Der BegriffProzent entstammt der Kaufmannssprache und taucht im Deutschen erstmals im 15. Jahrhundert in kaufmännischen Dokumenten aus Süddeutschland auf. Dort wird jedoch noch nicht das heutige Wort verwendet, sondern das aus dem Italienischen übernommeneper cento (dt. pro hundert).[7] Das italienischecento wiederum leitet sich von dem lateinischencentum (dt.hundert) ab. Im 16. Jahrhundert setzte sich im hochdeutschen Sprachraum dann eine Umstellung aufpro cento durch,[7] die dann zum heutigen Prozent und der inzwischen veralteten relatinisierten Formpro centum geworden ist.[8][9] In Österreich jedoch blieb die ursprüngliche italienische Form weiterhin erhalten und wurde zu dem heutigen (inzwischen allerdings auch veralteten)Perzent.[10][7]
Die typografisch korrekte Schreibweise ist mit einem Leerzeichen zwischen Zahl und Prozentzeichen. Im Computersatz ist hier eingeschütztes Leerzeichen zu verwenden, um einen Umbruch zwischen Zahl und Prozentzeichen zu verhindern. Diese Regel gilt neben der deutschen in vielen weiteren Sprachen wie in der französischen, norwegischen, russischen und schwedischen Sprache. In der englischen Sprache wird dagegen kein Leerzeichen zwischen Zahl und Prozentzeichen gesetzt.
Bei Verwendung mit Nachsilbe wird zusammengeschrieben. Beispiel: „15%ige Steigung“. Eleganter ist jedoch, halb oder ganz auszuschreiben: „15-prozentige Steigung“ oder „fünfzehnprozentige Steigung“.
Singular/Plural: 1 % wird im Singular geschrieben, bevorzugt mit „ein“ statt Zahl: „Das ist nur ein Prozent aller Stimmen“. Andere Werte im Plural: „Das sind 7,5 % der Stimmen.“ oder „Das sind nur drei Prozent der Stimmen.“
Prozentränge oderPerzentile bezeichnen die Intervalle, die eine statistische Verteilung in 100 anteilsgleiche Teile zerlegen.
Promille haben als Referenzwert die 1000, nicht die 100.
AlsProzentpunkte werden die Differenz zwischen zwei Prozentwerten bezeichnet, undBasispunkt bezeichnet den hundertsten Teil eines Prozentpunktes bei Zinssätzen.
Der BegriffBremshundertstel wird im Eisenbahnwesen bei der Angabe des Bremsvermögens von Schienenfahrzeugen verwendet.
↑Meyers kleine Enzyklopädie Mathematik. 14., neu bearb. und erw. Auflage. Hrsg. von Siegfried Gottwald … Meyers Lexikonverlag, Mannheim 1995,ISBN 3-411-07771-9, S. 149.
↑Fritz Reinhardt:dtv-Atlas Schulmathematik. Deutscher Taschenbuch Verlag, 2002,ISBN 3-423-03099-2, S. 90–91.
↑abcEtymologie. Herkunftswörterbuch der deutschen Sprache. Duden Band 7, Bibliographisches Institut Mannheim 1963,ISBN 3-411-00907-1, S. 535.
↑Boris Paraschkewow:Wörter und Namen gleicher Herkunft und Struktur: Lexikon etymologischer Dubletten im Deutschen. Walter de Gruyter 2004,ISBN 978-3-11-017470-0, S. 54 (Auszug in der Google-Buchsuche).