Nyquist-Shannon-Abtasttheorem
DasNyquist-Shannon-Abtasttheorem, auchnyquist-shannonsches Abtasttheorem und in neuerer Literatur auchWKS-Abtasttheorem (für Whittaker, Kotelnikow und Shannon) genannt, ist ein grundlegendesTheorem derNachrichtentechnik,Signalverarbeitung undInformationstheorie.Wladimir Kotelnikow formulierte das Abtasttheorem 1933. Die Veröffentlichung in einem sowjetischen Konferenzbericht wurde im Osten seit den 1950er Jahren referenziert, blieb aber allgemein im Westen bis in die 1980er weitgehend unbekannt. Unabhängig von Kotelnikow formulierteClaude Elwood Shannon es 1948 als Ausgangspunkt seiner Theorie der maximalenKanalkapazität, d. h. der maximalenBitrate in einem frequenzbeschränkten, rauschbelasteten Übertragungskanal.[1]
Das Abtasttheorem besagt, dass ein aufbandbegrenztesSignal[2] aus einer Folge vonäquidistanten Abtastwerten exakt rekonstruiert werden kann, wenn es mit einer Frequenz von größerabgetastet wurde.
Geschichtliche Entwicklung
[Bearbeiten |Quelltext bearbeiten]Claude Shannon stützte sich auf Überlegungen vonHarry Nyquist zur Übertragung endlicher Zahlenfolgen mittels trigonometrischer Polynome und auf dieTheorie der Kardinalfunktionen vonEdmund Taylor Whittaker (1915) und dessen SohnJohn Macnaghten Whittaker (1928).[3] Zu ähnlichen Resultaten wie Nyquist kamKarl Küpfmüller 1928.[4]
Erst die Rechercheure derEduard-Rhein-Stiftung haben die Priorität (1933) vonWladimir Alexandrowitsch Kotelnikow zweifelsfrei nachgewiesen. Dafür bekam er 1999 den Eduard-Rhein-Preis.
Unabhängig von Kotelnikow formulierteHerbert P. Raabe das Abtasttheorem 1939.[5]
Grundlagen
[Bearbeiten |Quelltext bearbeiten]
Das von Shannon formulierte Abtasttheorem besagt, dass eineFunktion, die keine Frequenzen höher als enthält, durch eine beliebige Reihe von Funktionswerten im Abstand eindeutig bestimmt ist. Einehinreichende Bedingung dafür ist dieQuadratintegrierbarkeit der Funktion.
Der Funktionsverlauf kann dann rekonstruiert werden, indem jeder Abtastwert durch einesinc-Funktion mit gleicher Amplitude ersetzt und anschließend über allek summiert wird.
In derSignalverarbeitung entspricht dies derAbtastung mit einer Abtastrate. Die so erhaltene Signaldarstellung wirdPulsamplitudenmodulation genannt. Zur Rekonstruktion wird dieses Signal durch einenidealen Tiefpass mit Grenzfrequenz gefiltert.
Bei Nicht-Basisband-Signalen, d. h. solchen mit minimaler Frequenzfmin größer als 0 Hz, gilt das Abtasttheorem in ähnlicher Form, da durch geeignete Wahl der Abtastfrequenz, das Bandpasssignal im Basisband nach der Abtastung erscheint. Die Abtastfrequenz muss dann lediglich größer als die doppelteBandbreite sein (siehe auchUnterabtastung). Bei der Rekonstruktion wird hier statt eines idealen Tiefpasses ein idealer Bandpass verwendet.
Bei der Unterabtastung eines Bandpasssignals gilt:
In der Praxis wird ein Signal vor der Abtastung meist tiefpassgefiltert, damit die (Basis-)Bandbreite der Abtastrate genügt. Analog gilt das Abtasttheorem auch bei Bildern und Videos, wobei die Abtastfrequenz dann in Linien (bzw. Pixel) pro Längeneinheit bestimmt werden kann.
Anschauung
[Bearbeiten |Quelltext bearbeiten]Wie im ArtikelAbtastung (Signalverarbeitung) beschrieben ist, kann man das Abtasten eines Signals durch die Multiplikation mit einemDirac-Kamm modellieren, wodurch man das abgetastete Signal erhält. Nach der Umkehrung desFaltungstheorems ergibt sich damit die Fouriertransformierte des abgetasteten Signals durch:
wobei periodisch mit der Periode ist und der Abstand zwischen 2 Abtastzeitpunkten ist. Unterschreitet man nun mit der Abtastfrequenz die Frequenz (für Basisbandsignale), so werden niedrigere und höhere Frequenzkomponenten im Frequenzraum überlagert und können anschließend nicht mehr getrennt werden.[6]
Die Dauer eines technischen Abtastpulses ist allerdings nicht beliebig kurz. Deswegen liegt in der Praxis das Frequenzspektrum einer Rechteckpulsfolge vor statt das einer Diracstoßfolge. (Der Diracstoß ist anschaulich eine Funktion, die nur an einer einzigen Stelle (t = 0) unendlich groß ist und an allen anderen Stellen verschwindet. Eine mathematisch saubere Definition erfolgt im Rahmen von Distributionen.)
Erklärung der Begriffe
[Bearbeiten |Quelltext bearbeiten]Bandbeschränktes Signal
[Bearbeiten |Quelltext bearbeiten]Ein in derBandbreite beschränktes Signalx mit einer maximalen FrequenzF:=fmax ist eine Funktion, für welche dieFouriertransformierte existiert und diese Fouriertransformierte außerhalb des Intervalls Null ist. Dann kann umgekehrt das bandbeschränkte Signal durch die inverse Fouriertransformation der Frequenzdichte dargestellt werden:
- .
„Gute“, zulässige Funktionen für die FrequenzdichteX sind beispielsweise stückweise stetige Funktionen, für die in jedem Punkt beide der einseitigen Grenzwerte existieren. Allgemeiner sind Funktionen aus demFunktionenraum zulässig.
Istxreellwertig, so gilt. WirdX inPolarkoordinaten dargestellt,, so erhalten wirx mittels eines Integrals mit reellem Integranden,
- .
In der kartesischen Darstellung ergibt sich analog
- .
Abtasten mit der doppelten Frequenz
[Bearbeiten |Quelltext bearbeiten]Abtasten mit der doppelten Frequenz bedeutet hier, dass Funktionswerte in gleichmäßigen Abständen genommen werden, wobei ein einfacher Abstand beträgt, d. h., ausx wird die Zahlenfolge konstruiert. Nach der Fourierdarstellung ergeben sich diese Werte aus der Frequenzdichte als
- .
Diese sind aber gerade die Koeffizienten in derFourierreihenentwicklung
Somit ist die Frequenzdichte und damit das Signal schon durch die Werte der Abtastfolge vollständig determiniert.
Rekonstruieren ohne Informationsverlust
[Bearbeiten |Quelltext bearbeiten]Rekonstruieren ohne Informationsverlust bedeutet, dass dieLagrange-Interpolation, ausgeweitet auf den Fall mit unendlich vielen, regelmäßig angeordneten Stützstellen, wieder das Ausgangssignal ergibt
- .
Man beachte, dass man mit diesen Formeln in der Mathematik zwar ausgezeichnet arbeiten kann, sie sich aber in realen Abtastsystemen so nicht realisieren lassen. Zur Bestimmung eines jeden Signalwertes wäre eine Summation über einen unendlichen Bereich notwendig. Außerdem müssten unendlich viele Takte abgewartet werden, bevor die Summation abgeschlossen werden kann. Weil das nicht möglich ist, entstehen in der Praxis unvermeidliche Fehler.
Die Funktion, derSinus cardinalis (sinc), ist dabei der ideale Interpolationskern für ganzzahlige Stützstellen; es ist sinc(0)=1 und sinc(n)=0 für jedes weitere ganzzahligen. Die interpolierende Reihe wird auch, nach Whittakers Notation, als Kardinalreihe bezeichnet, dabei bezieht sich die Vorsilbekardinal auf die herausragende Rolle als „schwankungsärmste“ unter allen interpolierendenFunktionenreihen. Die sinc-Funktion hat, bis auf einen Faktor, dieRechteck-Funktion als Fourier-Transformierte, diese hat den Wert 1 auf dem Intervall, sonst den Wert Null. Sie ist also bandbeschränkt mit höchster Frequenz1/2.
Die Entwicklung als Kardinalreihe ergibt sich nun ganz natürlich, indem die Fourierreihe der Frequenzdichte in die inverse Fouriertransformation eingesetzt wird,
Signal in Bandpasslage
[Bearbeiten |Quelltext bearbeiten]Ein reelles Signal inBandpasslage muss, um Abtastung durch Funktionswerte zu erlauben, eine nur für Frequenzen aus dem Intervall nicht verschwindende Fourier-Transformierte haben. Dann istF die einseitige Bandbreite. Dieses kann auf Frequenzbänder beliebigen Zuschnitts verallgemeinert werden, allerdings ist dann das Abtasten nicht durch Funktionswerte, sondern durch Skalarprodukte zu definieren. Ein Beispiel dafür ist dasFrequenzmultiplexverfahren, siehe auchOFDM.
Bemerkung: Kein endliches Signal, d. h., keine Funktion mit einem endlichenTräger erfüllt die Voraussetzungen an eine bandbeschränkte Funktion. Ebenso wenig fallen periodische Signale, wie zum Beispiel reine Sinusschwingungen, in den Bereich dieses Theorems; genauso wenig Signale mit Unstetigkeiten (Knicken oder Sprüngen im Verlauf). Es ist somit als ideale Aussage in einer idealen Situation zu betrachten. Dem Ideal am nächsten kommen modulierte Schwingungen, wie Musik- oder Sprachaufzeichnungen, die zur Weiterverarbeitung digitalisiert werden sollen. Für andere praktische Zwecke, z. B. digitale Bildbearbeitung, müssen Varianten des Abtasttheorems mit nicht ganz so starken Anforderungen gefunden werden, für die dieses Theorem dann Richtschnur ist.[7]
Mathematischer Hintergrund
[Bearbeiten |Quelltext bearbeiten]Zu mathematischen Grundlagen siehe:Lebesgue-Integral,Lebesgue-Raum,Fourier-Transformation.
Durch Skalieren der Zeitabhängigkeit kann jedes bandbeschränkte Signalx(t) auf den Frequenzbereich[-½; ½], bzw.[-π; π] als Kreisfrequenzbereich, reduziert werden. Die Frequenzdichteg(f) muss eineFunktion beschränkter Variation sein, wie es zum Beispiel stückweise stetige Funktionen sind. Dann istx(t) eine stetige, beliebig oft differenzierbare, absolut- und quadratintegrable Funktion,, und hat eine Fourier-Transformierte mit Träger.
Der Funktionswertx(t) an jedem beliebigen Punktt ist unter diesen Voraussetzungen schon allein durch die Funktionswertex(n) an allen ganzzahligen Punktent=n festgelegt, es gilt:
- .
Diese Gleichung enthält zwei nichttriviale Aussagen: 1) Die unendlicheReihe konvergiert, und 2) der Grenzwert ist immer identisch mit dem Funktionswertx(t).
Die Identität einer bandbeschränkten Funktion mit ihrer oben angegebenenKardinal-Reihe (nach Whittaker) ergibt sich aus derPoissonschen Summenformel, es gilt
- ,
woraus sich nach der Formel der Inversen Fourier-Transformation
Durch geschickte Anwendung der allgemeinenAbtastformel kann man auch verallgemeinerte Kardinalreihenentwicklungen erhalten, zum Beispiel
- ,
d. h., die Abtastrate ist halbiert, dafür werden an jedem Abtastpunkt zwei Werte genommen, der Funktionswert und die erste Ableitung. Es wird gewissermaßen lokal linear entwickelt und die Entwicklungen mittels einerZerlegung der Eins „zusammengeklebt“. Formeln mit Ableitungen höherer Ordnung erlauben keine so einfache Interpretation.[8]
Istf bandbeschränkt auf Kreisfrequenzen aus dem Intervall und sindpaarweise verschiedene reelle Zahlen, so gilt
Der erste Faktor im Summanden ist die Kernfunktion einer Zerlegung der Eins, der zweite Faktor einInterpolationspolynom, das der Lagrange-Interpolation ähnlich sieht. Lässt man dieak simultan nach0 laufen und ersetzt durch dasTaylor-Polynom vom GradN-1 oder größer, so ergeben sich beliebig komplexe differentielle Kardinalreihen.
Tiefpass zur Verhinderung von Aliasing
[Bearbeiten |Quelltext bearbeiten]Wird die Abtastfrequenz zu klein gewählt, treten im digitalisierten Signal Mehrdeutigkeiten auf. Diese nichtlinearen Verzerrungen sind auch unter dem Begriff Alias-Effekt bekannt. Bei Bildern treten eventuell phasenverschobene Schatten oder neue Strukturen auf, die im Original nicht enthalten sind.
Den unteren Grenzwert der Abtastfrequenz für ein analoges Signal der Bandbreite
nennt man auchNyquist-Rate. Die höchste zu übertragende Frequenz muss demnach kleiner sein als die halbe Abtastfrequenz, sonst entstehen Aliasingfehler. Aus diesem Grund werden höhere Frequenzen aus dem analogen Signal mit einem Tiefpass herausgefiltert. Die Aliasingfehler sindAlias-Signale (Störsignale, Pseudosignale), die sich bei der Rekonstruktion als störende Frequenzanteile bemerkbar machen. Wird zum Beispiel ein Sinussignal, das eine Frequenz von 1600 Hz hat, mit einer Abtastfrequenz von 2000 Hz digitalisiert, erhält man ein 400-Hz-Alias-Signal (2000–1600 Hz). Bei einer Abtastfrequenz über 3200 Hz entsteht dagegen kein Alias-Signal. Eine Abtastfrequenz von bspw. 3300 Hz führt zu einem Differenzsignal von 1700 Hz (3300–1600 Hz). Dieses ist jedoch größer als die halbe Abtastrate und wird demnach bei der Rekonstruktion durch einen Tiefpass entfernt.
In der Praxis gibt es keinenidealen Tiefpass. Er hat immer einen gewissen Übergangsbereich zwischen praktisch keiner Dämpfung imDurchlassbereich und praktisch vollständiger Dämpfung im Sperrbereich. Daher verwendet man in der Praxis eine modifizierte Formel zur Bestimmung der Abtastfrequenz:
Beispiel:
Auf einerCD wird ein Signal gespeichert, das durch die Digitalisierung eines analogen Audiosignals mit Frequenzen bis 20 kHz erzeugt wird. Die Frequenz, mit der das analoge Audiosignal abgetastet wird, beträgt 44,1 kHz.
Der verwendete Faktor ist abhängig vom verwendeten Tiefpassfilter und von der benötigten Dämpfung der Alias-Signale. Andere gebräuchliche Faktoren sind 2,4 (DAT,DVD) und 2,56 (FFT-Analysatoren).
Überabtastung
[Bearbeiten |Quelltext bearbeiten]Wenn man eine höhere Abtastfrequenz wählt, erhält man keine zusätzlichen Informationen. Der Aufwand für Verarbeitung, Speicherung und Übertragung steigt jedoch. Trotzdem wird Überabtastung (englischoversampling) in der Praxis angewendet. Liegt nämlich die Nutzbandbreite B sehr nahe bei der halben Abtastfrequenz, so werden hohe Anforderungen an dieFlankensteilheit desTiefpassfilters gestellt. Mit höherer Abtastfrequenz erreicht man eine ausreichend hohe Dämpfung im Sperrbereich eines Tiefpasssystems einfacher als mit einem hochwertigen Filter. Die Bandbegrenzung kann dann auf ein Digitalfilter hoher Ordnung verlagert werden. In der Praxis wird häufig ein ÜberabtastungsfaktorM = 2 oderM = 4 gewählt. Somit braucht man weniger steile analoge Filter vor dem Abtasten. Nach der ersten Abtastung wird dann ein digitaler Filter vor der folgenden Abtastratenreduktion eingesetzt, womit die Abtastfrequenz nachträglich gesenkt wird. Dieses digitale Filter wird auch alsDezimationsfilter bezeichnet. Es kann beispielsweise in Form einesCascaded-Integrator-Comb-Filters realisiert werden.
Mathematisch ausgedrückt hat einidealer Tiefpassfilter alsÜbertragungsfunktion eineRechteckfunktion.Diese Übertragungsfunktion schneidet das Spektrum imFrequenzraum perfekt ab und das gefilterte Signal kann perfekt aus den Abtastpunkten rekonstruiert werden. Allerdings lässt sich ein ideales Tiefpassfilter nicht praktisch realisieren, da es nichtkausal und unendlich lang ist.
Deswegen verwendet man analoge Tiefpassfilter, welche eine stetige,trapezähnliche Übertragungsfunktion aufweisen und deren Flanken mit kontinuierlicher, endlicher Steigung zu- bzw. abnehmen. Diese Filter können beispielsweise in Form vonButterworth-Filtern realisiert werden. Nach dem Abtasten erfolgt die digitale Glättung und das Heruntertakten auf die Nutzbandbreite. Die Flankensteilheit hat dabei einen Einfluss auf die Güte des rekonstruierten Signals.
Unterabtastung
[Bearbeiten |Quelltext bearbeiten]Die Bedingung aus dem Abtasttheorem ist eine vereinfachte Darstellung, die allerdings sehr gebräuchlich und nützlich ist. Genau genommen muss anstelle von dieBandbreite stehen, die durch den Bereich zwischen niedrigster und höchster im Signal vorkommenden Frequenz definiert ist. Nur inBasisbandsignalen ist die Bandbreite mit identisch, Basisbandsignale sind Signale mit niederfrequenten Anteilen in der Nähe von 0 Hz.
Diese Erkenntnis führte zu einem Konzept namensBandpassunterabtastung (odersub-nyquist sampling), das zum Beispiel in digitaler Radiotechnik Verwendung findet. Angenommen, man möchte alle Radiosender empfangen, die zwischen 88 und 108 MHz senden. Interpretiert man das Abtasttheorem wie bisher beschrieben, so müsste die Abtastfrequenz über 216 MHz liegen. Tatsächlich wird aber durch die Technik der Unterabtastung nur eine Abtastfrequenz von etwas mehr als 40 MHz benötigt. Voraussetzung dafür ist, dass vor der Abtastung aus dem Signal mittelsBandpassfilter alle Frequenzen außerhalb des Frequenzbereichs von 88 bis 108 MHz entfernt werden. Die Abtastung erfolgt beispielsweise mit 44 MHz, ohne dass der relevante Bereich von einem analogenMischer umgesetzt würde – das Ergebnis ist quasi ein Alias-Signal und entspricht dem Signal, das bei Abtastung eines per Mischer auf 0–22 MHz umgesetzten Bereichs entstünde.
Um in der Praxis die notwendige punktförmige Abtastung wenigstens näherungsweise realisieren zu können, muss dieAbtast-Halte-Schaltung jedoch derart ausgelegt werden, dass das Ausleseintervall so eng wird, wie es für eine Abtastfrequenz von 220 MHz oder mehr vonnöten wäre. Zu vergleichen ist das mit einer Abtastung mit 220 MHz, von der nur jeder fünfte Wert weiterbenutzt wird, während die je vier dazwischenliegenden Abtastwerte verworfen werden.
Siehe auch
[Bearbeiten |Quelltext bearbeiten]Literatur
[Bearbeiten |Quelltext bearbeiten]- Harry Nyquist:Certain Topics in Telegraph Transmission Theory. In:Transactions of the American Institute of Electrical Engineers. Vol. 47, 1928,ISSN 0096-3860, S. 617–644 (Wiederabdruck in:Proceedings of the IEEE. Vol. 90, No. 2, 2002,ISSN 0018-9219, S. 617–644).
- J. R. Higgins:Five short stories about the cardinal series. In:Bulletin of the American Mathematical Society. NS Vol. 12, No. 1, 1985, S. 45–89.
- Michael Unser:Sampling – 50 Years after Shannon. In:Proceedings of the IEEE. Vol. 88, No. 4, 2000, S. 569–587, (online).
- Wolfgang Wunderlich:Digitales Fernsehen HDTV, HDV, AVCHD für Ein- und Umsteiger. Auberge-tv Verlag, Hohen Neuendorf 2007,ISBN 978-3-00-023484-2.
Weblinks
[Bearbeiten |Quelltext bearbeiten]- Interaktive Darstellung der Abtastung und der Signalrückgewinnung in einer Webdemo Institut für Nachrichtenübertragung der Universität Stuttgart
Einzelnachweise
[Bearbeiten |Quelltext bearbeiten]- ↑Claude Elwood Shannon:Communication in the Presence of Noise (PDF; 301 kB). In:Proc. IRE. Vol. 37, No. 1, 1949 (Nachdruck in:Proc. IEEE. Vol. 86, No. 2, 1998)
- ↑Algorithmic Information Theory: Mathematics of Digital Information Processing, Peter Seibt, Springer, 2006,ISBN 3-540-33219-7, S. 216 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑J. M. Whittaker:The “Fourier” Theory of the Cardinal Function. In:Proceedings of the Edinburgh Mathematical Society (Series 2).Band 1,Nr. 03, 1928,S. 169–176,doi:10.1017/S0013091500013511.
- ↑K. Küpfmüller:Über die Dynamik der selbsttätigen Verstärkungsregler. In:Elektrische Nachrichtentechnik. Bd. 5, Nr. 11, 1928, S. 459–467.
- ↑Hans Dieter Lüke:The Origins of the Sampling Theorem, IEEE Communications Magazine, S. 106–108, April 1999.Online-Version (PDF; 53 kB).
- ↑Thomas Görne:Tontechnik. Hanser Verlag, 2008,ISBN 3-446-41591-2, S. 153 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑vgl. Michael Unser:Sampling – 50 Years after Shannon. In:Proceedings of the IEEE. Vol. 88, No. 4, 2000, S. 569–587.
- ↑siehe J. R. Higgins:Five short stories about the cardinal series. In:Bulletin of the American Mathematical Society. NS Vol. 12, No. 1, 1985, S. 45–89.