Beispiel, wie Mergesort eine Liste sortiert. Die Listenelemente werden durch Punkte dargestellt. Die waagerechte Achse gibt an, wo sich ein Element in der Liste befindet, die senkrechte Achse gibt an, wie groß ein Element ist.
Mergesort betrachtet die zu sortierenden Daten als Liste und zerlegt sie in kleinere Listen, die jede für sich sortiert werden. Die kleinen sortierten Listen werden dann im Reißverschlussverfahren zu größeren sortierten Listen zusammengefügt (engl.(to) merge), bis eine sortierte Gesamtliste erreicht ist. Das Verfahren arbeitet bei Arrays in der Regel nichtin-place, es sind dafür aber (trickreiche) Implementierungen bekannt, in welchen die Teil-Arrays üblicherweise rekursiv zusammengeführt werden.[2]Verkettete Listen sind besonders geeignet zur Implementierung von Mergesort, dabei ergibt sich die in-place-Sortierung fast von selbst.
Das Bild veranschaulicht die drei wesentlichen Schritte einesTeile-und-herrsche-Verfahrens, wie sie im Rahmen von Mergesort umgesetzt werden. Der Teile-Schritt ist ersichtlich trivial (die Daten werden einfach in zwei Hälften aufgeteilt). Die wesentliche Arbeit wird beim Verschmelzen (merge) geleistet – daher rührt auch der Name des Algorithmus. BeiQuicksort ist hingegen der Teile-Schritt aufwendig und der Merge-Schritt einfacher (nämlich eineKonkatenierung).
Bei der Betrachtung des in der Grafik dargestellten Verfahrens sollte man sich allerdings bewusst machen, dass es sich hier nur um eine von mehrerenRekursionsebenen handelt. So könnte etwa die Sortierfunktion, welche die beiden Teile 1 und 2 sortieren soll, zu dem Ergebnis kommen, dass diese Teile immer noch zu groß für die Sortierung sind. Beide Teile würden dann wiederum aufgeteilt und der Sortierfunktion rekursiv übergeben, so dass eine weitere Rekursionsebene geöffnet wird, welche dieselben Schritte abarbeitet. Im Extremfall (der bei Mergesort sogar der Regelfall ist) wird das Aufteilen so weit fortgesetzt, bis die beiden Teile nur noch aus einzelnen Datenelementen bestehen und damit automatisch sortiert sind.
Der folgendePseudocode illustriert die Arbeitsweise desAlgorithmus, wobeiliste die zu sortierenden Elemente enthält.
funktion mergesort(liste); falls (Größe von liste <= 1) dann antworte liste sonst halbiere die liste in linkeListe, rechteListe linkeListe = mergesort(linkeListe) rechteListe = mergesort(rechteListe) antworte merge(linkeListe, rechteListe)
funktion merge(linkeListe, rechteListe); neueListe solange (linkeListe und rechteListe nicht leer) falls (erstes Element der linkeListe <= erstes Element der rechteListe) dann füge erstes Element linkeListe in die neueListe hinten ein und entferne es aus linkeListe sonst füge erstes Element rechteListe in die neueListe hinten ein und entferne es aus rechteListe solange_ende solange (linkeListe nicht leer) füge erstes Element linkeListe in die neueListe hinten ein und entferne es aus linkeListe solange_ende solange (rechteListe nicht leer) füge erstes Element rechteListe in die neueListe hinten ein und entferne es aus rechteListe solange_ende antworte neueListe
Im letzten Verschmelzungsschritt ist das Reißverschlussverfahren beim Verschmelzen (in der Abb. „Mischen:“) angedeutet. Blaue Pfeile verdeutlichen den Aufteilungsschritt, grüne Pfeile die Verschmelzungsschritte.
Es folgt ein Beispielcode analog zum obigen Abschnitt „Implementierung“ für den rekursiven Sortieralgorithmus. Er teilt rekursiv absteigend die Eingabe in 2 kleinere Listen, bis diese trivialerweise sortiert sind, und verschmilzt sie auf dem rekursiven Rückweg, wodurch sie sortiert werden.
function merge_sort(listx)if length(x) ≤ 1thenreturnx // Kurzesx ist trivialerweise sortiert.varl := empty listvarr := empty listvarnx := length(x)−1 // Teilex in die zwei Hälftenl undr ...fori := 0to floor(nx/2)do appendx[i] tolfori := floor(nx/2)+1tonxdo appendx[i] tor // ... und sortiere beide (einzeln).l := merge_sort(l)r := merge_sort(r) // Verschmelze die sortierten Hälften.return merge(l,r)
Beispielcode zum Verschmelzen zweier sortierter Listen.
function merge(listl, listr)vary := empty list // Ergebnislistevarnl := length(l)−1varnr := length(r)−1varil := 0fori := 0tonl+nr+1doifil >nlthen appendr[i−il] toycontinueifil <i−nrthen appendl[il] toyil :=il+1continue // Jetzt ist 0 ≤il ≤nl und 0 ≤i−il ≤nr.ifl[il] ≤r[i−il]then appendl[il] toyil :=il+1else appendr[i−il] toyreturny
Eine iterative Implementation in der ProgrammierspracheJava unter Verwendung vonverketteten Listen könnte folgendermaßen aussehen:
(Es wird einemerge()-Funktion zum Verschmelzen zweier Listen verwendet, die im Absatz darunter erläutert wird.)
voidmergeSort(List<Integer>l){intn=l.size();//Erstelle n Teillisten. (1 Element pro Liste) (Divide)LinkedList<LinkedList<Integer>>groups=newLinkedList<LinkedList<Integer>>();for(inti=0;i<n;i++){LinkedList<Integer>list=newLinkedList<>();list.add(l.get(i));groups.add(list);}//Solange mehrere Gruppen existieren:while(groups.size()>1){//Merge die ersten beiden Listen im Vorrat und hänge die verbundene Liste hinten an.groups.addLast(merge(groups.removeFirst(),groups.removeFirst()));}//Überschreibe die unsortierte Liste mit der sortierten Versionlist=groups.getFirst();}
Gegeben sind zwei in sich sortierte Listen und, die zu einer sortierten Liste zusammengefügt werden sollen.
Man vergleicht nun die beiden kleinsten Elemente (am Anfang der Listen und), fügt das kleinere zu hinzu und nimmt es aus der jeweiligen Liste oder heraus.
Dies wird so lange wiederholt, bis eine der beiden Listen A oder B leer ist, danach wird der Rest aus der anderen Liste oder (in der noch Einträge vorhanden sind) ans Ende von gehängt.
Der Mergeschritt braucht genau immer Operationen, da jedes Element aus beiden Listen in konstanter Zeit gelöscht und hinzugefügt werden kann. Die Laufzeit beträgt folglich:
LinkedList<Integer>merge(LinkedList<Integer>linkeListe,LinkedList<Integer>rechteListe){LinkedList<Integer>temp=newLinkedList<>();// Solange noch nicht beide Listen hinzugefügt wordenwhile(!linkeListe.isEmpty()&&!rechteListe.isEmpty()){if(linkeListe.getFirst()<=rechteListe.getFirst()){temp.addLast(linkeListe.removeFirst());}else{temp.addLast(rechteListe.removeFirst());}}// Füge Rest hinzu, falls etwas übrig ist.temp.addAll(linkeListe);temp.addAll(rechteListe);returntemp;}
Mergesort ist ein stabiles Sortierverfahren, vorausgesetzt der Merge-Schritt ist entsprechend implementiert. SeineKomplexität beträgt im Worst-, Best- und Average-Case inLandau-Notation ausgedrückt stets.
Damit ist Mergesort hinsichtlich der Komplexität Quicksort grundsätzlich überlegen, da Quicksort (ohne besondere Vorkehrungen) einWorst-Case-Verhalten von besitzt. Es benötigt jedoch zusätzlichen Speicherplatz (der Größenordnung), ist also kein In-place-Verfahren.
Für die Laufzeit von Mergesort bei zu sortierenden Elementen gilt die Rekursionsformel
mit dem Rekursionsanfang.
Nach demMaster-Theorem kann die Rekursionsformel durch bzw. approximiert werden mit jeweils der Lösung (2. Fall des Mastertheorems, s. dort).
Durchschnittliche und maximale Anzahl Vergleiche
Sind die Längen der zu verschmelzenden und vorsortierten Folgen dann gilt für die Anzahl der erforderlichen Vergleiche fürs sortierende Verschmelzen
,
da erstens eine Folge komplett vor der anderen liegen kann, d. h., es ist bzw. oder es ist zweitens (bzw. umgekehrt), sodass die Elemente bis zum letzten Element in jeder Folge verglichen werden müssen. Dabei ist jeweils angenommen, dass das Vergleichen der zwei Folgen bei den Elementen mit niedrigem Index beginnt. Mit
(Subskript fürmaximal) sei die maximale Anzahl der Vergleiche fürsVerschmelzen bezeichnet.Für die maximale Anzahl an Vergleichen für einen ganzenMergesort-Lauf von Elementen errechnet sich daraus
Für eine Gleichverteilung lässt sich auch die durchschnittliche Anzahl (Subskript fürdurchschnittlich) der Vergleiche genau berechnen, und zwar ist für
und für
Dabei ist die Anzahl der Vergleiche für die Anordnung
,
wobei für das letzte (das am höchsten sortierende) Element in der Folge steht, die (nicht von einem Element aus unterbrochenen)en zu gehören und (die auch fehlen können) entweder zu oder zu gehören. Der in den Summenformeln beigegebeneBinomialkoeffizient zählt die verschiedenen Möglichkeiten für
Für die durchschnittliche Anzahl an Vergleichen für einen ganzen Mergesort-Lauf von Elementen errechnet man daraus
Der Rekursionsabbruch stellt dieTerminierung von Mergesort offensichtlich sicher, so dass lediglich noch dieKorrektheit gezeigt werden muss. Dies geschieht, indem wir folgende Behauptung beweisen:
Behauptung: In Rekursionstiefe werden die sortierten Teillisten aus Rekursionstiefe korrekt sortiert.
Beweis: Seio. B. d. A. die-te Rekursion die tiefste. Dann sind die Teillisten offensichtlich sortiert, da sie einelementig sind. Somit ist ein Teil der Behauptung schon mal gesichert. Nun werden diese sortierten Teillisten eine Rekursionsebene nach oben, also in die-te Rekursion übergeben. Dort werden diese nach Konstruktion dermerge-Prozedur von Mergesort korrekt sortiert. Somit ist unsere Behauptung erfüllt und die totale Korrektheit von Mergesort bewiesen.
Natural Mergesort(natürliches Mergesort) ist eine Erweiterung von Mergesort, diebereits vorsortierte Teilfolgen, so genannteruns, innerhalb der zu sortierenden Startliste ausnutzt. Die Basis für den Mergevorgang bilden hier nicht die rekursiv oder iterativ gewonnenen Zweiergruppen, sondern die in einem ersten Durchgang zu bestimmendenruns:
Diese Variante hat den Vorteil, dass sortierte Folgen „erkannt“ werden und die Komplexität im Best-Case beträgt. Average- und Worst-Case-Verhalten ändern sich hingegen nicht.
Außerdem eignet sich Mergesort gut für größere Datenmengen, die nicht mehr im Hauptspeicher gehalten werden können – es müssen jeweils nur beim Verschmelzen in jeder Ebene zweiListen vom externen Zwischenspeicher (z. B. Festplatte) gelesen und eine dorthin geschrieben werden. Eine Variante nutzt den verfügbaren Hauptspeicher besser aus (und minimiert Schreib-/Lesezugriffe auf der Festplatte), indem mehr als nur zwei Teil-Listen gleichzeitig vereinigt werden, und damit die Rekursionstiefe abnimmt.
Mergesort lässt sich aufgrund desTeile-und-herrsche Ansatzes gut parallelisieren. Verschiedene parallele Varianten wurden in der Vergangenheit entwickelt. Manche sind stark verwandt mit der hier vorgestellten sequentiellen Variante, während andere eine grundlegend verschiedene Struktur besitzen und dasK-Wege-Mischen verwenden.
Der sequentielle Mergesort kann in zwei Phasen beschrieben werden, die Teilen-Phase und die anschließende Misch-Phase. Die erste besteht aus vielen rekursiven Aufrufen, die immer wieder den gleichen Aufteilungsprozess durchführen, bis die Teilsequenzen trivial sortiert sind (mit einem oder keinem Element). Ein intuitiver Ansatz ist es, diese rekursiven Aufrufe zu parallelisieren.[3] Der folgende Pseudocode beschreibt den klassischen Mergesort Algorithmus mit paralleler Rekursion unter Verwendung der Schlüsselwörter fork and join.
//Sort elements lo through hi (exclusive) of array A.algorithm mergesort(A, lo, hi)isif lo+1 < hithen //Two or more elements. mid := ⌊(lo + hi) / 2⌋fork mergesort(A, lo, mid) mergesort(A, mid, hi)join merge(A, lo, mid, hi)
Dieser Algorithmus ist die triviale Modifikation des sequentiellen Algorithmus und ist noch nicht optimal. Sein Speedup ist dementsprechend auch nicht beeindruckend. Er hat einen Spann von, was nur eine Verbesserung um den Faktor ist im Vergleich zur sequentiellen Version. Dies liegt hauptsächlich an der sequentiellen Mischmethode, welche der Flaschenhals der parallelen Ausführung ist.
Ein besserer Parallelismus kann durch eine paralleleMischmethode erreicht werden. Cormen et al. präsentieren eine binäre Variante, welche zwei sortierte Teilsequenzen in eine sortierte Ausgabesequenz mischt.[3]
In der längeren der beiden Sequenzen (falls ungleich lang) wird das Element des mittleren Indexes ausgewählt. Seine Position in der anderen Sequenz wird so bestimmt, dass die Sequenz sortiert bliebe, wenn dieses Element an der bestimmten Stelle eingefügt werden würde. So weiß man, wie viele Elemente insgesamt kleiner sind als dasPivotelement, und die finale Position des Pivots kann in der Ausgabesequenz berechnet werden. Für die so erzeugten Teilfolgen der kleineren und größeren Elemente wird die Mischmethode wieder parallel ausgeführt, bis der Basisfall der Rekursion erreicht ist.
Der folgende Pseudocode illustriert den Mergesort mit modifizierter paralleler Mischmethode (aus Cormen et al.).
/** * A: Input array * B: Output array * lo: lower bound * hi: upper bound * off: offset */algorithm parallelMergesort(A, lo, hi, B, off)is len := hi - lo + 1if len == 1then B[off] := A[lo]else let T[1..len] be a new array mid := ⌊(lo + hi) / 2⌋ mid' := mid - lo + 1fork parallelMergesort(A, lo, mid, T, 1) parallelMergesort(A, mid + 1, hi, T, mid' + 1)join parallelMerge(T, 1, mid', mid' + 1, len, B, off)
Um eine Rekurrenzrelation für den Worst Case zu erhalten, müssen die rekursiven Aufrufe von parallelMergesort aufgrund der parallelen Ausführung nur einmal aufgeführt werden. Man erhält
.
Für genauere Informationen über die Komplexität der parallelen Mischmethode.
Die Lösung dieser Rekurrenz ist
.
Dieser Algorithmus erreicht eine Parallelisierbarkeit von, was um einiges besser ist als der Parallelismus des vorherigen Algorithmus. Solch ein Sortieralgorithmus kann, wenn er mit einem schnellen stabilen sequentiellen Sortieralgorithmus und einer sequentiellen Mischmethode als Basisfall für das Mischen von zwei kleinen Sequenzen ausgestattet ist, gut in der Praxis funktionieren.[4]
Es wirkt unnatürlich, Mergesort Algorithmen auf binäre Mischmethoden zu beschränken, da oftmals mehr als zwei Prozessoren zur Verfügung stehen. Ein besserer Ansatz wäre es, einK-Wege-Mischen zu realisieren. Diese Generalisierung mischt im Gegensatz zum binären Mischen sortierte Sequenzen zu einer sortierten Sequenz. Diese Misch-Variante eignet sich gut zur Beschreibung eines Sortieralgorithmus auf einemPRAM.[5][6]
Der parallele Mehrwege-Mergesort Algorithmus auf vier Prozessoren bis.
Gegeben sei eine Folge von Elementen. Ziel ist es, diese Sequenz mit verfügbaren Prozessoren zu sortieren. Die Elemente sind dabei gleich auf alle Prozessoren aufgeteilt und werden zunächst lokal mit einem sequentiellenSortieralgorithmus vorsortiert. Dementsprechend bestehen die Daten nun aus sortierten Folgen der Länge. Der Einfachheit halber sei ein Vielfaches von, so dass für gilt:. Jede dieser Sequenzen wird wiederum in Teilsequenzen partitioniert, indem für die Trennelemente mit globalem Rang bestimmt werden. Die korrespondierenden Indizes werden in jeder Folge mit binärer Sucher ermittelt, sodass die Folgen anhand der Indizes aufgeteilt werden können. Formal definiert gilt somit.
Nun werden die Elemente von dem Prozessor zugeteilt. Dies sind alle Elemente vom globalen Rang bis zum Rang, die über die verteilt sind. So erhält jeder Prozessor eine Folge von sortierten Sequenzen. Aus der Tatsache, dass der Rang der Trennelemente global gewählt wurde, ergeben sich zwei wichtige Eigenschaften: Zunächst sind die Trennelemente so gewählt, dass jeder Prozessor nach der Zuteilung der neuen Daten immer noch mit Elementen betraut ist. Der Algorithmus besitzt also eine perfekteLastverteilung. Außerdem sind alle Elemente des Prozessors kleiner oder gleich der Elemente des Prozessors. Wenn nun jeder Prozessor einp-Wege-Mischen lokal durchführt, sind aufgrund dieser Eigenschaft die Elemente global sortiert. Somit müssen die Ergebnisse nur in der Reihenfolge der Prozessoren zusammengesetzt werden.
In der einfachsten Form sind sortierte Folgen gleichverteilt auf Prozessoren sowie ein Rang gegeben. Gesucht ist nun ein Trennelement mit globalem Rang in der Vereinigung der Folgen. Damit kann jede Folge an einem Index in zwei Teile aufgeteilt werden: Der untere Teil besteht nur aus Elementen, die kleiner sind, während der obere Teil alle Elemente enthält, welche größer oder gleich als sind.
Der hier vorgestellte sequentielle Algorithmus gibt die Indizes der Trennungen zurück, also die Indizesin den Folgen, sodass einen global kleineren Rang als hat und ist.[7]
algorithm msSelect(S : Array of sorted Sequences [S_1,..,S_p], k : int)isfor i = 1to pdo (l_i, r_i) = (0, |S_i|-1)
while there exists i: l_i < r_ido //pick Pivot Element in S_j[l_j],..,S_j[r_j], chose random j uniformly v := pickPivot(S, l, r)for i = 1to pdo m_i = binarySearch(v, S_i[l_i, r_i]) //sequentiallyif m_1 + ... + m_p >= kthen //m_1+ ... + m_p is the global rank of v r := m //vector assignmentelse l := m
return l
Für die Komplexitätsanalyse wurde das PRAM-Modell gewählt. Die p-fache Ausführung derbinarySearch Methode hat eine Laufzeit in, falls die Daten über alle Prozessoren gleichverteilt anliegen. Die erwartete Rekursionstiefe beträgt wie imQuickselect Algorithmus. Somit ist die gesamte erwartete Laufzeit.
Angewandt auf den parallelen Mehrwege-Mergesort muss diemsSelect Methode parallel ausgeführt werden, um alle Trennelemente vom Rang gleichzeitig zu finden. Dies kann anschließend verwendet werden, um jede Folge in Teile zu zerschneiden. Es ergibt sich die gleiche Gesamtlaufzeit.
Hier ist der komplette Pseudocode für den parallelen Mehrwege-Mergesort. Dabei wird eine Barriere-Synchronisation vor und nach der Trennelementbestimmung angenommen, sodass jeder Prozessor seine Trennelemente und die Partitionierung seiner Sequenz richtig berechnen kann.
/** * d: Unsorted Array of Elements * n: Number of Elements * p: Number of Processors * return Sorted Array */algorithm parallelMultiwayMergesort(d : Array, n : int, p : int)is o :=new Array[0, n] // the output arrayfor i = 1to pdo in parallel // each processor in parallel S_i := d[(i-1) * n/p, i * n/p] // Sequence of length n/p sort(S_i) // sort locallysynch v_i := msSelect([S_1,...,S_p], i * n/p) // element with global rank i * n/psynch (S_i,1 ,..., S_i,p) := sequence_partitioning(si, v_1, ..., v_p) // split s_i into subsequences
o[(i-1) * n/p, i * n/p] := kWayMerge(s_1,i, ..., s_p,i) // merge and assign to output array
Zunächst sortiert jeder Prozessor die zugewiesenen Elemente lokal mit einem vergleichsbasierten Sortieralgorithmus der Komplexität. Anschließend können die Trennelemente in Zeit bestimmt werden. Schließlich müssen jede Gruppe von Teilstücken gleichzeitig von jedem Prozessor zusammen gemischt werden. Dies hat eine Laufzeit von, indem ein sequentieller k-Wege Mischalgorithmus verwendet wird. Somit ergibt sich eine Gesamtlaufzeit von
Der Mehrwege-Mergesort Algorithmus ist durch seine hohe Parallelität, was den Einsatz vieler Prozessoren ermöglicht, sehr skalierbar. Dies macht den Algorithmus zu einem brauchbaren Kandidaten für das Sortieren großer Datenmengen, wie sie beispielsweise inComputer-Clustern verarbeitet werden. Da der Speicher in solchen Systemen in der Regel keine limitierende Ressource darstellt, ist der Nachteil der Speicherkomplexität von Mergesort vernachlässigbar. Allerdings werden in solchen Systemen andere Faktoren wichtig, die bei der Modellierung auf einerPRAM nicht berücksichtigt werden. Hier sind unter anderem die folgenden Aspekte zu berücksichtigen: DieSpeicherhierarchie, wenn die Daten nicht in den Cache der Prozessoren passen, oder der Kommunikationsaufwand beim Datenaustausch zwischen den Prozessoren, der zu einem Engpass werden könnte, wenn auf die Daten nicht mehr über den gemeinsamen Speicher zugegriffen werden kann.
Sanders et al. haben in ihrem Paper einenbulk synchronous parallel-Algorithmus für einen mehrstufigen Mehrwege-Mergesort vorgestellt, der Prozessoren in Gruppen der Größe unterteilt. Alle Prozessoren sortieren zuerst lokal. Im Gegensatz zu einem einstufigen Mehrwege-Mergesort werden diese Sequenzen dann in Teile aufgeteilt und den entsprechenden Prozessorgruppen zugeordnet. Diese Schritte werden innerhalb dieser Gruppen rekursiv wiederholt. So wird die Kommunikation reduziert und insbesondere Probleme mit vielen kleinen Nachrichten vermieden. Die hierarchische Struktur des zugrundeliegenden realen Netzwerks (z. B.Racks,Cluster,...) kann zur Definition der Prozessorgruppen verwendet werden.[6]
Mergesort war einer der ersten Sortieralgorithmen, bei dem ein optimalerSpeedup erreicht wurde, wobei Richard Cole einen cleveren Subsampling-Algorithmus verwendete, um die O(1)-Zusammenführung sicherzustellen.[8] Andere ausgeklügelte parallele Sortieralgorithmen können die gleichen oder bessere Zeitschranken mit einer niedrigeren Konstante erreichen. David Powers beschrieb beispielsweise 1991 einen parallelisiertenQuicksort (und einen verwandtenRadixsort), der durch implizite Partitionierung in Zeit auf einerCRCW-Parallel Random Access Machine (PRAM) mit Prozessoren arbeiten kann.[9] Powers zeigt ferner, dass eine Pipeline-Version von Batchers Bitonic Mergesort in Zeit auf einem Butterfly-Sortiernetzwerk in der Praxis schneller ist als sein Sortieralgorithmus auf einer PRAM, und er bietet eine detaillierte Diskussion der versteckten Overheads beim Vergleich, bei der Radix- und der Parallelsortierung.[10]
Da Mergesort die Startliste sowie alle Zwischenlisten sequenziell abarbeitet, eignet er sich besonders zur Sortierung vonverketteten Listen. FürArrays wird normalerweise ein temporäres Array derselben Länge des zu sortierenden Arrays als Zwischenspeicher verwendet (das heißt Mergesort arbeitet normalerweise nichtin-place, s. o.). Quicksort dagegen benötigt kein temporäres Array.
Für die Größe des temporären Arrays reicht die halbe Größe der Anzahl der Elemente (n/2) aus. Unoptimierte Codebeispiele arbeiten mit einem Hilfsarray der Größe (n), dies ist für den Mergesort Algorithmus nicht erforderlich.[11]
↑abThomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein:Introduction to algorithms. 3. Auflage. MIT Press, Cambridge, Mass. 2009,ISBN 978-0-262-27083-0.
↑Victor J. Duvanenko:Parallel Merge Sort. In:Dr. Dobb's Journal & blog.duvanenko.tech.blog and GitHub repo C++ implementationgithub.com
↑abdl.acm.org (Hrsg.):Practical Massively Parallel Sorting | Proceedings of the 27th ACM symposium on Parallelism in Algorithms and Architectures.doi:10.1145/2755573.2755595 (englisch,acm.org [abgerufen am 28. Februar 2020]).
↑Peter Sanders:Parallele Algorithmen, Karlsruher Institut für Technologie, 25. November 2019, abgerufen 5. Februar 2020
↑Richard Cole:Parallel Merge Sort. In:SIAM Journal on Computing.Band17,Nr.4, August 1988,ISSN0097-5397,S.770–785,doi:10.1137/0217049 (siam.org [abgerufen am 6. März 2020]).