Flüssigchromatographie mit Massenspektrometrie-Kopplung

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet vonLC/MS)
Zur Navigation springenZur Suche springen
Ein modernes LCMS
Ein Massenspektrometer für die LC/MS

Flüssigchromatographie mit Massenspektrometrie-Kopplung(LC/MS, HPLC-MS) ist ein analytisches Verfahren zur Trennung und Bestimmung vonMolekülen durch eine Kombination derFlüssigchromatographie (LC, bzw.HPLC) mit derMassenspektrometrie (MS).[1][2][3][4] Dabei dient die Chromatographie zur Auftrennung von Molekülen in einem Gemisch und die anschließende Massenspektrometrie zur Identifikation und/oder Quantifizierung der Substanzen. In der Regel werden bei der LC noch weitere Detektoren zwischengeschaltet wie z. B.UV/VIS- oderLeitfähigkeitsdetektoren.

Prinzip

[Bearbeiten |Quelltext bearbeiten]

Eine der großen Schwierigkeiten der LC/MS war lange die Schnittstelle zwischen dem Chromatographieteil und dem Massenspektrometer. An dieser Stelle müssen überschüssige Probenvolumen und vor allem das Lösungsmittel entfernt werden. In der Regel wird etwa 90 % der Lösung aus der Chromatographie entfernt und das verbliebene Material mit verschiedenen Gasströmen verdampft. Während frühe Geräte häufige Defekte und Verschmutzungen des Interfaces aufwiesen, existieren mittlerweile Geräte, die sich für einen Routineeinsatz im analytischen Labor eignen.

AlsIonisierungsverfahren kommen heuteElektrospray-Ionisation (ESI) oderChemische Ionisation bei Atmosphärendruck (APCI) zum Einsatz. Eine weitere Möglichkeit, die mit diesen Verfahren verbundenen Probleme zu umgehen, ist die Verminderung des Probenvolumens in einernano-LC/MS. Hierbei wird die chromatographische Auftrennung mit einer deutlich geringeren Flussrate vollzogen, in der Regel zwischen 200 und 1000 nL/Min. Dadurch kann auf ein Trägergas verzichtet werden, wodurch Verschmutzungen seltener auftreten. Eine nano-LC Einheit ist jedoch insgesamt anfälliger für Störungen anderer Art wie z. B. Verstopfungen derTrennsäule.[5]

Durch die Kopplung der Methoden steht als Ergebnis für jeden Punkt des Chromatogramms ein Massenspektrum zur Verfügung. Dadurch wird es möglich die chemische Struktur von Verunreinigungen in Gemischen aufzuklären und als Verunreinigungsprofile darzustellen. Die durch die große Zahl der Massenspektren zur Verfügung stehende Information bzw. Datenmenge stellt Arbeitsplatzcomputer auch heute noch vor Herausforderungen. Gerade bei der LC/MS-Analyse von Proteinen wird daher großer Aufwand betrieben, falsch positive Ergebnisse herauszufiltern. Da unterschiedliche LC/MS-Geräte (und Kopplungsmethoden) häufig nicht vergleichbare Massenspektren ergeben, ist eine Spektreninterpretation über Spektrendatenbanken (wie bei derGaschromatographie mit Massenspektrometrie-Kopplung (GC/MS) üblich) nur sehr eingeschränkt möglich. Die Aufklärung der chemischen Struktur mit LC/MS erfordert deshalb ein hohes Maß an Erfahrung sowie umfassende Kenntnisse der möglichen Fragmentmassen. Der Einsatz vonMSxMS-Kopplung durch Triple-Quad-Geräte oderIonenfallen verfolgt daher oft das Ziel, weitere Informationen über die zu untersuchenden Substanzen zu gewinnen. Die Interpretation der LC/MS-Messungen kann auch durchFlüssigchromatographie/Kernspinresonanzspektroskopie-Messungen (LC/NMR) unterstützt werden.

Einzelnachweise

[Bearbeiten |Quelltext bearbeiten]
  1. J. O. Becker, A. N. Hoofnagle:Replacing immunoassays with tryptic digestion-peptide immunoaffinity enrichment and LC-MS/MS. In:Bioanalysis. Band 4, Nummer 3, Februar 2012, S. 281–290,ISSN 1757-6199.doi:10.4155/bio.11.319.PMID 22303832.PMC 3699856 (freier Volltext).
  2. I. Finoulst, M. Pinkse, W. Van Dongen, P. Verhaert:Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. In:Journal of biomedicine & biotechnology. Band 2011, 2011, S. 245291,ISSN 1110-7251.doi:10.1155/2011/245291.PMID 22203783.PMC 3238806 (freier Volltext).
  3. B. Zhou, J. F. Xiao, L. Tuli, H. W. Ressom:LC-MS-based metabolomics. In:Molecular bioSystems. Band 8, Nummer 2, Februar 2012, S. 470–481,ISSN 1742-2051.doi:10.1039/c1mb05350g.PMID 22041788.PMC 3699692 (freier Volltext).
  4. E. Ciccimaro, I. A. Blair:Stable-isotope dilution LC?MS for quantitative biomarker analysis. In:Bioanalysis. Band 2, Nummer 2, Februar 2010, S. 311–341,ISSN 1757-6199.doi:10.4155/bio.09.185.PMID 20352077.PMC 2843934 (freier Volltext).
  5. Gey, M. H.,Instrumentelle Analytik und Bioanalytik, S. 6, 261–288, 298, 329–335; 2. Aufl., Springer Verlag, Berlin, 2008
Abgerufen von „https://de.wikipedia.org/w/index.php?title=Flüssigchromatographie_mit_Massenspektrometrie-Kopplung&oldid=249862258
Kategorien: