Cooper-Paar

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springenZur Suche springen
Leon Neil Cooper, Erstbeschreiber

AlsCooper-Paare werden paarweise Zusammenschlüsse von beweglichenElektronen in speziellen Materialien bezeichnet. Sie treten bei sehrtiefen Temperaturen auf und sind Voraussetzung für densupraleitenden Zustand dieser (metallischen oderkeramischen) Materialien. Das Phänomen der Cooper-Paar-Bildung ist nach der Erstbeschreibung im Jahr 1956 durchLeon Neil Cooper benannt[1] und erhält in derBCS-Theorie der Supraleitung grundlegende Bedeutung.

Allgemeiner betrachtet handelt es sich um Paare in fermionischenVielteilchensystemen, bei denen zwei gepaarteFermionen ein „zusammengesetztesBoson“ ergeben. Das gleiche Phänomen tritt dadurch auch in anderem Zusammenhang auf, nämlich zwischen jeweils zwei Atomen imsupraflüssigen Zustand von 3He unterhalb einer Temperatur von 2,6 mK;[2] dagegen gibt es im supraflüssigen Zustand von 4Hekeine Cooper-Paare, da hier die Atome Bosonen sind.

Eine weitere Möglichkeit zur Bildung von Cooper-Paaren liegt in derKondensation ultrakalter fermionischer Gase geringerDichte mit Methoden derAtomphysik, vergleichbar derBose-Einstein-Kondensation bosonischer Gase.[3]

Auch bei der 1986 entdecktenHochtemperatursupraleitung scheinen Cooper-Paare im Spiel zu sein, wie experimentelle Belege zeigen.[4] Jedoch ist der zur Paarbildung führende Bindungsmechanismus der beiden Elektronen in diesem Fall trotz jahrelanger Bemühungen noch unklar, im Gegensatz zu den seit über 100 Jahren bekannten konventionellen Supraleitern, wie sie weiter unten beschrieben werden, bei denenPhononen die Paarbildung bewirken.

Inhaltsverzeichnis

Erklärung

[Bearbeiten |Quelltext bearbeiten]

In Metallen können sich dieLeitungselektronen praktisch frei zwischen den Atomen bewegen. Dieses „Elektronengas“ besteht aus Fermionen und unterliegt deshalb derFermi-Verteilung, die eine bestimmteGeschwindigkeitsverteilung von null bis zu sehr hohen Werten vorhersagt (die charakteristische Temperatur beträgtTF104K{\displaystyle T_{F}\sim 10^{4}\,\mathrm {K} }). Die Bewegung derAtomkerne spielt dagegen eine vergleichsweise geringe Rolle (die charakteristische Temperatur ist hier dieDebye-Temperatur von etwa 150...600 K).

Erst bei noch tieferen Temperaturen kommt es zu einer nicht mehr zu vernachlässigenden paarweisen Anziehung der Elektronen durch die Atombewegung. Die Stärke dieser Wechselwirkung entspricht Temperaturen von etwa

10 K (−263 °C);

das entspricht Energien von

ΔE103eV{\displaystyle \Delta E\sim 10^{-3}\,{\rm {eV}}}

bzw.Lebensdauern der Größe

ΔτΔE0,71012s{\displaystyle \Delta \tau \sim {\frac {\hbar }{\Delta E}}\sim 0{,}7\cdot 10^{-12}\,\mathrm {s} }

mit derreduzierten Planck-Konstante{\displaystyle \hbar }.

Das Ergebnis fürΔτ{\displaystyle \Delta \tau } entspricht typischen Phonon-Frequenzen, was aber noch nichts beweist: Experimente, die zeigen, dass es sich bei den beteiligten Teilchen tatsächlich um Phononen (quantisierte Atomschwingungen) handelt, und nicht etwa um andersartigeAnregungszustände des Systems, beruhen vielmehr auf demIsotopeneffekt, was Leon Neil Cooper auf die im Folgenden dargestellten Vorstellungen brachte.

Die Bewegung der Atomkerne zieht sich alsWellenphänomen durch das ganze Medium und ergibt (nach Quantisierung) die Phononen. Sie erfolgt aufgrund ihrer höheren Masse zeitlich stark verzögert, woraus eine schwachePolarisation desGitters resultiert, welche dieCoulomb-Abstoßung überkompensiert. Ein zweites Elektron kann nun in dieser „Polarisationsspur“ seine Energie absenken, d. h., es wird schwach gebunden; vermittelt über die Gitterbewegung entsteht ein Cooper-Paar. Die Bildung der Cooper-Paare beruht also – wie alle Polarisationseffekte – auf einer schwachen indirekten Wechselwirkung: Die Elektronen ziehen sich an, weil das System durch die Wechselwirkung polarisiert wird.

Diese Wechselwirkung kann durch folgendesDiagramm beschrieben werden:

Feynman-Diagramm eines Beitrags zur Elektron-Elektron-Bindung durch „Austausch“ einesPhonons (Zeitachse von unten nach oben; das Phonon, ein Schwingungsquant des Festkörpers, hier mit γ bezeichnet, läuft mit vergleichsweise geringer Geschwindigkeit von links nach rechts oder von rechts nach links).

Man kann den resultierenden Bindungseffekt mit der Bildung einer schwachen Einsenkung in einem Trommelfell unter der Schwerewirkung eines ersten Teilchens vergleichen: Infolgedessen wird ein zweites Teilchen, das sich ebenfalls auf dem Trommelfell bewegt, von dem ersten angezogen, sodass beide aneinander gebunden sind.

Da sich die beiden beteiligten Elektronen in entgegengesetzter Richtung bewegen, ist der Gesamtimpuls des Cooper-Paares i. Allg. klein oder null. Die Impulse müssen also nicht exakt, sondern nur „ungefähr“ entgegengesetzt-gleich sein, damit Paarbildung möglich ist. In der Tat ist die Geschwindigkeit des Suprastromes – und damit dessen Stärke – proportional zur betrachteten Differenz.[5]

Der „Platzbedarf“ jedes Elektrons in einem Cooper-Paar wird durch seinWellenpaket beschrieben. Wenn sich diese voneinander entfernen, zerfallen Cooper-Paare, weil sich die Wellenpakete kaum noch überlappen, andere bilden sich neu.

Schätzt man mit derUnschärferelation die Ausdehnung der Wellenpakete ab, so kommt man auf Werte von bis zu 10−6 m. Ein Vergleich mit den mittleren Abständen der Elektronen imKristallgitter ergibt das überraschende Ergebnis, dass der Radius des Cooper-Paars von der angegebenen Größenordnung sein kann, so dass sich zwischen den Elektronen eines Cooper-Paars mindestens 1010 andere Elektronen befinden können. Davon haben etwa eine Million anderer Elektronen so ähnliche und überlappende Wellenpakete, dass auch sie Cooper-Paare bilden. Die Cooper-Paare sind also fast ebenso zahlreich wie die Elektronen selbst.

Der wesentliche Mechanismus zur Erklärung der Supraleitung (s. u.) ist aber, dass sie im Gegensatz zu den Elektronen, die wegen der Fermi-Statistik einander gewissermaßen „aus dem Wege gehen“, zu einemkohärenten Zustand kondensieren können, wie er für die Supraleitung und generell für Supraflüssigkeiten charakteristisch ist. Obwohl dieVertauschungsrelationen zweier Cooperpaare nicht genau denen der Bose-Teilchen entsprechen, sind sie darin diesen doch ähnlich.

Bedeutung bei Supraleitern

[Bearbeiten |Quelltext bearbeiten]

Elektronen gehören zur Teilchengruppe der Fermionen und haben denSpin 1/2 (vgl.Spin-Statistik-Theorem). DieFermi-Dirac-Statistik ergibt, dass deshalb in einem Zweielektronensystem ohneSpin-Bahn-Kopplung bei symmetrischer Ortsfunktion die Spinfunktionantisymmetrisch sein muss, also etwa

Ψ=Φsymm(r1,r2)(↑↓↓↑).{\displaystyle \Psi =\Phi _{\rm {symm}}({\vec {r}}_{1},\,{\vec {r}}_{2})\cdot (\uparrow \downarrow -\downarrow \uparrow ).}

Anschaulich bedeutet dies, dass der Spin des einen Elektrons nach „oben“ zeigt (d. h., er ist +1/2, in Einheiten der reduziertenPlanck-Konstante{\displaystyle \hbar }), während der andere Spin nach „unten“ weist (d. h., er ist −1/2, in denselben Einheiten), also antiparallel ausgerichtet. Der Gesamtspin des Cooper-Paares ist in diesem Fall null. Dies entspricht demSingulett-Zustand.

Ein weiterer, wenn auch seltenerer Fall, ist die parallele Ausrichtung der einzelnen Spins der Cooper-Paar-Elektronen, wobei sich der Gesamtspin zu Eins addiert. Hierbei spricht man vomTriplett-Zustand. Experimentell kann ein solcher Zustand durchTunnelexperimente nachgewiesen werden, da diese Cooper-Paare durch größereferromagnetische Barrieren tunneln können.[6]

In beiden Fällen sind die Cooper-Paare als zusammengesetzte Teilchen aufgrund ihres ganzzahligen Spins keine Fermionen, sondernBosonen. Für diese gilt nicht die Fermi-Dirac-, sondern dieBose-Einstein-Statistik. Sie besagt – anschaulich gesprochen –, dass die Cooper-Paare einem „Herdentrieb“ folgen, so dass sich der o. g.kohärente Zustand ergeben kann: Alle Paare bewegen sich mit der gleichen Geschwindigkeit in die gleiche Richtung und sind streng aneinander gekoppelt.

Der letztgenannte Zusatz bedeutet u. a., dass die Situation im Grunde nicht mit einemBose-Einstein-Kondensat verglichen werden darf, da die Cooper-Paare nicht als unabhängige Teilchen einesBose-Gases betrachtet werden können.

Dennoch erklärt die Bose-Einstein-Statistik die Eigenschaften metallischer Supraleiter, da alle Cooper-Paare alseffektive Bose-Teilchen ein-und-denselben quantenmechanischen Zustand besetzen dürfen (Anti-Pauli-Prinzip). Man hat es also auf jeden Fall mit einemmakroskopischen, kollektiven Quantenphänomen zu tun.

Da die Ausdehnung derWellenpakete jedes Cooper-Paars fast schon makroskopisch groß ist, können diese durchdünne Isolatorschichten tunneln (Josephson-Effekt). Experimentell wurde nachgewiesen, dass stetszwei Elektronen die Barriere tunneln.

Energielücke

[Bearbeiten |Quelltext bearbeiten]

Mathematisch drückt sich die Tendenz zur Bildung von Cooperpaaren dadurch aus, dass imHamiltonoperator des Systems neben den üblichenbilinearen Termena^k+a^k{\displaystyle {\hat {a}}_{k}^{+}{\hat {a}}_{k}} (mit den Elektron-Erzeugungsoperatorena^k+{\displaystyle {\hat {a}}_{k}^{+}} und den zugehörigen Vernichtungsoperatorena^k{\displaystyle {\hat {a}}_{k}}) auch quadratische Terme der ungewöhnlichen Forma^k+a^k+{\displaystyle {\hat {a}}_{k}^{+}{\hat {a}}_{-k}^{+}} unda^ka^k{\displaystyle {\hat {a}}_{k}{\hat {a}}_{-k}} auftreten:[7]

H=k{ϵka^k+a^k+Δ(a^k+a^k++a^ka^k)}.{\displaystyle {\mathcal {H}}=\sum _{k}\,\{\epsilon _{k}\,{\hat {a}}_{k}^{+}{\hat {a}}_{k}+\Delta \cdot ({\hat {a}}_{k}^{+}{\hat {a}}_{-k}^{+}\,+\,{\hat {a}}_{k}{\hat {a}}_{-k})\}.}

Dabei ist

Grundzustand und angeregte Zustände des Systems werden durch die Wechselwirkung nicht nur quantitativ, sondern auch qualitativ verändert. Die GrundzustandsenergieE{\displaystyle E} ist nur leicht erhöht:E=ϵ2+|Δ|2{\displaystyle E={\sqrt {\epsilon ^{2}+|\Delta |^{2}}}}, aber – was wesentlicher ist – es bildet sich jetzt eineEnergielücke der Größe2|Δ|{\displaystyle 2|\Delta |} zu den angeregten Zuständen aus. Das hat u. a. zur Folge, dass derelektrische Widerstand bei entsprechend niedrigen Temperaturen überall null ist.

Einzelnachweise und Fußnoten

[Bearbeiten |Quelltext bearbeiten]
  1. Leon N. Cooper:Bound electron pairs in a degenerate Fermi gas. In:Physical Review. 104. Jahrgang,Nr. 4, 1956,S. 1189–1190,doi:10.1103/PhysRev.104.1189 (englisch). 
  2. Osheroff DD, Richardson RC, Lee DM:Evidence for a new phase in solid3He. In:Phys. Rev. Lett. 28. Jahrgang,Nr. 14, 1972,S. 885–888,doi:10.1103/PhysRevLett.28.885 (englisch). 
  3. C. A. Regalet al.:Observation of Resonance Condensation of Fermionic Atom Pairs. In:Physical Review Letters. 92. Jahrgang,Nr. 4, 2004,S. 040403,doi:10.1103/PhysRevLett.92.040403 (englisch). 
  4. Cooper-Paar-Bildung in Hochtemperatursupraleitern behandelt der folgende Artikel:Hochtemperatur-Supraleitung konventioneller als gedacht. In: mpg.de. 3. Mai 2004, abgerufen am 17. Januar 2023. 
  5. Robert Schrieffer:Theory of Superconductivity. Benjamin 1964; siehe vor allem das letzte Kapitel.
  6. Presseinformation der Ruhr-Universität Bochum, 1. Dezember 2010:Das „Paarungsverhalten“ der Elektronen
  7. Die Erzeugungsoperatorena^k+{\displaystyle {\hat {a}}_{k}^{+}} und Vernichtungsoperatorena^k{\displaystyle {\hat {a}}_{k}} wirken dabei sowohl auf diek{\displaystyle k}-Wellenvektoren als auch auf die Spinzustände.
Normdaten (Sachbegriff):GND:4346549-3(lobid,OGND,AKS)
Abgerufen von „https://de.wikipedia.org/w/index.php?title=Cooper-Paar&oldid=243407493
Kategorien: