Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Proof of Process: Worked Examples
draft-condrey-rats-pop-examples-00

This document is an Internet-Draft (I-D). Anyone may submit an I-D to the IETF. This I-D isnot endorsed by the IETF and hasno formal standing in theIETF standards process.
DocumentTypeActive Internet-Draft (individual)
AuthorDavid Lee Condrey
Last updated 2026-02-06
RFC stream (None)
Intended RFC status (None)
Formats
Additional resources GitHub Organization
GitHub Repository
Additional Web Page
Related Implementations
Stream Stream state(No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
Email authors IPR 1 References Referenced by Nits Search email archive
draft-condrey-rats-pop-examples-00
Remote ATtestation procedureS                                 D. CondreyInternet-Draft                                          Writerslogic IncIntended status: Informational                           6 February 2026Expires: 10 August 2026                   Proof of Process: Worked Examples                   draft-condrey-rats-pop-examples-00Abstract   This document provides worked examples demonstrating the Proof of   Process Evidence format and Attestation Results.  Examples include   minimal Evidence packets, multi-checkpoint scenarios, jitter seal   verification, VDF causality chains, and salt mode configurations.   This companion document supplements the main Proof of Process   specification with practical reference implementations.Status of This Memo   This Internet-Draft is submitted in full conformance with the   provisions of BCP 78 and BCP 79.   Internet-Drafts are working documents of the Internet Engineering   Task Force (IETF).  Note that other groups may also distribute   working documents as Internet-Drafts.  The list of current Internet-   Drafts is at https://datatracker.ietf.org/drafts/current/.   Internet-Drafts are draft documents valid for a maximum of six months   and may be updated, replaced, or obsoleted by other documents at any   time.  It is inappropriate to use Internet-Drafts as reference   material or to cite them other than as "work in progress."   This Internet-Draft will expire on 10 August 2026.Copyright Notice   Copyright (c) 2026 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject to BCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents (https://trustee.ietf.org/   license-info) in effect on the date of publication of this document.   Please review these documents carefully, as they describe your rights   and restrictions with respect to this document.Condrey                  Expires 10 August 2026                 [Page 1]Internet-Draft                PoP Examples                 February 2026Table of Contents   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3   2.  Minimal Evidence Packet (Basic Tier)  . . . . . . . . . . . .   3   3.  Multi-Checkpoint Evidence (Standard Tier) . . . . . . . . . .   5   4.  Jitter Seal Verification Example  . . . . . . . . . . . . . .   9     4.1.  Sample Histogram Data . . . . . . . . . . . . . . . . . .   9     4.2.  Entropy Calculation Walkthrough . . . . . . . . . . . . .  10     4.3.  Binding MAC Computation . . . . . . . . . . . . . . . . .  11     4.4.  Verifier Checks . . . . . . . . . . . . . . . . . . . . .  12   5.  VDF Causality Example . . . . . . . . . . . . . . . . . . . .  13     5.1.  VDF Input Computation for Checkpoint N  . . . . . . . . .  14     5.2.  Why Backdating Requires Recomputation . . . . . . . . . .  14     5.3.  Calibration Cross-Check . . . . . . . . . . . . . . . . .  15   6.  Absence Claim Example . . . . . . . . . . . . . . . . . . . .  15     6.1.  Chain-Verifiable Claim: max-single-delta-chars  . . . . .  15     6.2.  Monitoring-Dependent Claim: max-paste-event-chars . . . .  16   7.  Attestation Result Example (.war) . . . . . . . . . . . . . .  18   8.  Salt Mode Examples  . . . . . . . . . . . . . . . . . . . . .  20     8.1.  Unsalted Mode (Default) . . . . . . . . . . . . . . . . .  20     8.2.  Author-Salted Mode  . . . . . . . . . . . . . . . . . . .  21     8.3.  Third-Party Escrowed Mode . . . . . . . . . . . . . . . .  22     8.4.  Salt Mode Comparison  . . . . . . . . . . . . . . . . . .  23   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  23   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  24   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  24     11.1.  Normative References . . . . . . . . . . . . . . . . . .  24     11.2.  Informative References . . . . . . . . . . . . . . . . .  24   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  241.  Introduction   This document provides worked examples of Proof of Process (PoP)   Evidence packets and Attestation Results as defined in   [I-D.condrey-rats-pop].  All examples use CBOR diagnostic notation   [RFC8949] Section G, with comments (/ ... /) to annotate fields.   Integer keys are used as defined in the companion CDDL schema.   These examples are informative.  The normative schema is defined in   the CDDL schema document.  Implementers SHOULD validate their   implementations against test vectors derived from these examples.Condrey                  Expires 10 August 2026                 [Page 2]Internet-Draft                PoP Examples                 February 20261.1.  Requirements Language   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and   "OPTIONAL" in this document are to be interpreted as described in BCP   14 [RFC2119] [RFC8174] when, and only when, they appear in all   capitals, as shown here.2.  Minimal Evidence Packet (Basic Tier)   This example demonstrates a minimal Basic tier Evidence packet with a   single checkpoint.  The document is approximately 500 characters,   representing a short paragraph written in a single authoring session.   Scenario: An author writes a brief memo over approximately 3 minutes.   The Attesting Environment captures one checkpoint at the end of the   session.   1347571280({     1: 1,     2: "https://writerslogic.com/rats/eat/profile/pop/1.0",     3: h'550e8400e29b41d4a716446655440000',     4: 1(1706745600),     5: {       1: {         1: 1,         2: h'e3b0c44298fc1c149afbf4c8996fb924             27ae41e4649b934ca495991b7852b855'       },       2: "memo.txt",       3: 487,       4: 478,       5: 0     },     6: [       {         1: 0,         2: h'6ba7b8109dad11d180b400c04fd430c8',         3: 1(1706745780),         4: {           1: 1,           2: h'e3b0c44298fc1c149afbf4c8996fb924               27ae41e4649b934ca495991b7852b855'         },Condrey                  Expires 10 August 2026                 [Page 3]Internet-Draft                PoP Examples                 February 2026         5: 478,         6: 87,         7: {           1: 478, 2: 12, 3: 47, 4: 8,           5: 3, 6: 0, 7: 0, 8: 14, 9: 180.0         },         8: {           1: 1,           2: h'00000000000000000000000000000000               00000000000000000000000000000000'         },         9: {           1: 1,           2: h'a7ffc6f8bf1ed76651c14756a061d662               f580ff4de43b49fa82d80a4b80f8434a'         },         10: {           1: 1,           2: {1: 1, 2: 8500000},           3: h'9f86d081884c7d659a2feaa0c55ad015               a3bf4f1b2b0b822cd15d6c15b0f00a08',           4: h'2c624232cdd221771294dfbb310aca00               0a0df6ac8b66b696d90ef06fdefb64a3',           5: h'',           6: 180.0,           7: 1530000000,           8: {             1: 8500000,             2: 1(1706745600),             3: h'deadbeef...',             4: h'cafebabe...',             5: "MacBook Pro M3"           }         },         11: {           1: {             1: 1,             2: h'7d865e959b2466918c9863afca942d0f                 b89d7c9ac0c99bafc3749504ded97730'           },           2: (1, 2, 3),           3: {             1: 423,Condrey                  Expires 10 August 2026                 [Page 4]Internet-Draft                PoP Examples                 February 2026             2: [               {1: 0, 2: 50, 3: 12},               {1: 50, 2: 100, 3: 89},               {1: 100, 2: 200, 3: 156},               {1: 200, 2: 500, 3: 98},               {1: 500, 2: 1000, 3: 34},               {1: 1000, 2: 2000, 3: 18},               {1: 2000, 2: 5000, 3: 12},               {1: 5000, 2: 4294967295, 3: 4}             ],             3: 2.78,             4: []           },           4: h'b94d27b9934d3e08a52e52d7da7dabfa               c484efe37a5380ee9088f7ace2efcde9'         },         12: h'73475cb40a568e8da8a045ced110137e             159f890ac4da883b6b17dc651b3a8049'       }     ]   })   Key observations:   *  The Basic tier contains only the required checkpoint chain.  No      optional sections (presence, forensics, etc.) are included.   *  The genesis checkpoint has prev-hash of 32 zero bytes.   *  The VDF proves at least 180 seconds elapsed (1.53B iterations at      calibrated 8.5M iterations/second).   *  Jitter binding shows 423 timing samples with realistic      distribution peaking in the 100-200ms range.   *  Estimated entropy is 2.78 bits, below the recommended 32-bit      threshold for Standard tier but acceptable for Basic tier.3.  Multi-Checkpoint Evidence (Standard Tier)   This example demonstrates a Standard tier Evidence packet with three   checkpoints showing document evolution.  The document grows from 100   to 500 to 1200 characters across the checkpoints, representing a   typical drafting process with revisions.Condrey                  Expires 10 August 2026                 [Page 5]Internet-Draft                PoP Examples                 February 2026   Scenario: An author writes a short essay over 45 minutes with two   natural breaks where checkpoints are captured.  The evidence includes   presence challenges.   1347571280({     1: 1,     2: "https://writerslogic.com/rats/eat/profile/pop/1.0",     3: h'123e4567e89b12d3a456426614174000',     4: 1(1706832000),     5: {       1: {1: 1, 2: h'abcd1234...'},       3: 1247,       4: 1203,       5: 0     },     6: [       {         1: 0,         2: h'a1b2c3d4e5f6a7b8c9d0e1f2a3b4c5d6',         3: 1(1706832600),         4: {1: 1, 2: h'1111aaaa...'},         5: 103,         6: 19,         7: {           1: 103, 2: 8, 3: 22, 4: 5,           5: 2, 6: 0, 7: 0, 8: 6, 9: 600.0         },         8: {1: 1, 2: h'00000000...'},         9: {1: 1, 2: h'2222bbbb...'},         10: {           1: 1,           2: {1: 1, 2: 8500000},           3: h'input0...',           4: h'output0...',           5: h'',           6: 600.0,           7: 5100000000,           8: {             1: 8500000, 2: 1(1706832000),             3: h'sig...', 4: h'nonce...'           }         },         11: {           1: {1: 1, 2: h'jitter0...'},           2: (1, 2),           3: {1: 156, 2: (...), 3: 2.45},Condrey                  Expires 10 August 2026                 [Page 6]Internet-Draft                PoP Examples                 February 2026           4: h'mac0...'         },         12: h'chainmac0...'       },       {         1: 1,         2: h'b2c3d4e5f6a7b8c9d0e1f2a3b4c5d6e7',         3: 1(1706833800),         4: {1: 1, 2: h'3333cccc...'},         5: 512,         6: 94,         7: {           1: 423, 2: 14, 3: 87, 4: 12,           5: 6, 6: 0, 7: 0, 8: 23, 9: 1200.0         },         8: {1: 1, 2: h'2222bbbb...'},         9: {1: 1, 2: h'4444dddd...'},         10: {           1: 1,           2: {1: 1, 2: 8500000},           3: h'H(output0 || content-hash{1} || jitter-commitment{1})',           4: h'output1...',           5: h'',           6: 1200.0,           7: 10200000000         },         11: {           1: {1: 1, 2: h'jitter1...'},           2: (1, 2, 3),           3: {1: 298, 2: (...), 3: 2.67},           4: h'mac1...'         },         12: h'chainmac1...'       },       {         1: 2,         2: h'c3d4e5f6a7b8c9d0e1f2a3b4c5d6e7f8',         3: 1(1706835000),         4: {1: 1, 2: h'abcd1234...'},         5: 1203,         6: 218,         7: {           1: 712, 2: 21, 3: 134, 4: 18,           5: 8, 6: 0, 7: 0, 8: 45, 9: 1200.0         },         8: {1: 1, 2: h'4444dddd...'},Condrey                  Expires 10 August 2026                 [Page 7]Internet-Draft                PoP Examples                 February 2026         9: {1: 1, 2: h'5555eeee...'},         10: {           1: 1,           2: {1: 1, 2: 8500000},           3: h'H(output1 || content-hash{2} || jitter-commitment{2})',           4: h'output2...',           5: h'',           6: 1200.0,           7: 10200000000         },         11: {           1: {1: 1, 2: h'jitter2...'},           2: (1, 2, 3, 4),           3: {1: 387, 2: (...), 3: 2.89},           4: h'mac2...'         },         12: h'chainmac2...'       }     ],     10: {       1: [         {           1: 1(1706832900),           2: 1,           3: 847,           4: true,           5: h'challenge-nonce-1'         },         {           1: 1(1706834400),           2: 2,           3: 2134,           4: true,           5: h'challenge-nonce-2'         }       ],       2: {         1: 2,         2: 2,         3: 2,         4: 1490       }     }   })   VDF entanglement across checkpoints:Condrey                  Expires 10 August 2026                 [Page 8]Internet-Draft                PoP Examples                 February 2026   VDF Chain Causality:   +---------------+     +---------------+     +---------------+   | Checkpoint 0  |     | Checkpoint 1  |     | Checkpoint 2  |   |---------------|     |---------------|     |---------------|   | VDF_input{0}  |     | VDF_input{1}  |     | VDF_input{2}  |   |   = H(session |     |   = H(        |     |   = H(        |   |       entropy |     |     output{0} |     |     output{1} |   |    || content |     |  || content{1}|     |  || content{2}|   |    || jitter) |     |  || jitter{1})|     |  || jitter{2})|   |---------------|     |---------------|     |---------------|   | VDF_output{0} |---->| VDF_output{1} |---->| VDF_output{2} |   +---------------+     +---------------+     +---------------+   To backdate checkpoint 1, adversary must:   (1) Compute content that hashes to content-hash{1}   (2) Generate jitter that commits to jitter-commitment{1}   (3) Recompute VDF_output{1} from new VDF_input{1}   (4) Recompute VDF_output{2} (depends on output{1})   (5) Complete steps 3-4 before external anchor confirms state4.  Jitter Seal Verification Example   This example shows the complete jitter seal verification process,   including histogram data, entropy calculation, and binding MAC   computation.4.1.  Sample Histogram DataCondrey                  Expires 10 August 2026                 [Page 9]Internet-Draft                PoP Examples                 February 2026   jitter-binding = {     1: {       1: 1,       2: h'b94d27b9934d3e08a52e52d7da7dabfa           c484efe37a5380ee9088f7ace2efcde9'     },     2: (1, 2, 3),     3: {       1: 842,       2: [         {1: 0,    2: 50,   3: 24},         {1: 50,   2: 100,  3: 178},         {1: 100,  2: 200,  3: 312},         {1: 200,  2: 500,  3: 196},         {1: 500,  2: 1000, 3: 68},         {1: 1000, 2: 2000, 3: 36},         {1: 2000, 2: 5000, 3: 22},         {1: 5000, 2: 4294967295, 3: 6}       ],       3: 2.54,       4: []     },     4: h'73475cb40a568e8da8a045ced110137e         159f890ac4da883b6b17dc651b3a8049',     5: (87, 134, 112, 98, 203, 156, 89, 167, 1243, 78, ...)   }4.2.  Entropy Calculation Walkthrough   Shannon entropy is calculated from the histogram distribution:Condrey                  Expires 10 August 2026                [Page 10]Internet-Draft                PoP Examples                 February 2026   Given histogram counts: (24, 178, 312, 196, 68, 36, 22, 6)   Total samples: 842   (1) Calculate probabilities p(i) = count(i) / total     p{0} = 24/842  = 0.0285     p{1} = 178/842 = 0.2114     p{2} = 312/842 = 0.3705     p{3} = 196/842 = 0.2328     p{4} = 68/842  = 0.0808     p{5} = 36/842  = 0.0428     p{6} = 22/842  = 0.0261     p{7} = 6/842   = 0.0071   (2) Calculate Shannon entropy H = -sum(p{i} * log2(p{i}))     H = -(0.0285 * log2(0.0285)   = 0.148         + 0.2114 * log2(0.2114)   = 0.467         + 0.3705 * log2(0.3705)   = 0.531         + 0.2328 * log2(0.2328)   = 0.481         + 0.0808 * log2(0.0808)   = 0.295         + 0.0428 * log2(0.0428)   = 0.197         + 0.0261 * log2(0.0261)   = 0.137         + 0.0071 * log2(0.0071))  = 0.050     H = 2.306 bits (per sample from 8-bucket distribution)   (3) Estimated total entropy     Total entropy bits = H * log2(sample_count)     = 2.306 * log2(842)     = 2.306 * 9.72     = 22.4 bits (approximate)     Reported: 2.54 bits (average per-sample entropy)4.3.  Binding MAC ComputationCondrey                  Expires 10 August 2026                [Page 11]Internet-Draft                PoP Examples                 February 2026   binding-mac = HMAC-SHA256(       key = checkpoint-chain-key,       message = entropy-commitment ||                 CBOR(sources) ||                 CBOR(summary) ||                 prev-checkpoint-hash   )   Where:     checkpoint-chain-key = session-derived 256-bit key     entropy-commitment   = h'b94d27b9...' (32 bytes)     CBOR(sources)        = 83 01 02 03 (4 bytes: array of 3 uints)     CBOR(summary)        = A4 01 ... (variable length map)     prev-checkpoint-hash = h'...' (32 bytes)4.4.  Verifier Checks   A Verifier performs the following checks on the jitter seal:Condrey                  Expires 10 August 2026                [Page 12]Internet-Draft                PoP Examples                 February 2026   def verify_jitter_seal(jitter_binding, prev_hash, chain_key):       # (1) Structural validation       assert all_required_fields_present(jitter_binding)       assert len(jitter_binding.sources) >= 1       # (2) Recompute entropy-commitment (if raw-intervals disclosed)       if jitter_binding.raw_intervals is not None:           expected_commitment = sha256(               concat_as_uint32_le(jitter_binding.raw_intervals)           )           commitment = jitter_binding.entropy_commitment           assert commitment == expected_commitment       # (3) Recompute histogram (if raw-intervals disclosed)       if jitter_binding.raw_intervals is not None:           computed_histogram = bucket_intervals(               jitter_binding.raw_intervals,               boundaries=(0, 50, 100, 200, 500, 1000, 2000, 5000)           )           assert histograms_consistent(               computed_histogram,               jitter_binding.summary.timing_histogram           )       # (4) Verify binding MAC       expected_mac = hmac_sha256(           key=chain_key,           message=jitter_binding.entropy_commitment.value +                   cbor_encode(jitter_binding.sources) +                   cbor_encode(jitter_binding.summary) +                   prev_hash       )       assert jitter_binding.binding_mac == expected_mac       # (5) Entropy threshold check       assert jitter_binding.summary.entropy_bits >= MIN_THRESHOLD       # (6) Sample count plausibility       assert jitter_binding.summary.sample_count >= 10       return VERIFIED5.  VDF Causality Example   This example demonstrates VDF input computation and why backdating   requires recomputation of the entire subsequent chain.Condrey                  Expires 10 August 2026                [Page 13]Internet-Draft                PoP Examples                 February 20265.1.  VDF Input Computation for Checkpoint N   VDF_input{N} = SHA256(       VDF_output{N-1} ||       content-hash{N} ||       jitter-commitment{N} ||       uint32_le(sequence{N})   )   VDF_input{2} = SHA256(       h'output1...'    || h'abcd1234...'    || h'jitter2...'    || h'02000000'   )   VDF_output{2} = SHA256^10200000000(VDF_input{2})5.2.  Why Backdating Requires Recomputation Adversary Goal: Insert a fake checkpoint between checkpoints 0 and 1 Attempt: Create fake checkpoint 0.5 with:   - content-hash{0.5} = hash of backdated content   - jitter-commitment{0.5} = fabricated timing data   - sequence{0.5} = 1 (bumping original checkpoint 1 to sequence 2) Problem: This changes VDF_input{1}:   VDF_input{1}_original = H(VDF_output{0} || content{1} || jitter{1})   VDF_input{1}_fake     = H(VDF_output{0.5} || content{1} || jitter{1}) Since VDF_output{0.5} != VDF_output{0}, the adversary must: (1) Compute VDF_output{0.5} from VDF_input{0.5}    Cost: ~1200 seconds (cannot parallelize) (2) Recompute VDF_output{1} from new VDF_input{1}    Cost: ~1200 seconds (cannot parallelize) (3) Recompute VDF_output{2} from new VDF_input{2}    Cost: ~1200 seconds (cannot parallelize) Total minimum time: 3600 seconds = 1 hour (Cannot be reduced by parallel computation) If external anchor confirmed checkpoint 2 at T_anchor, adversary must complete all recomputation before T_anchor. Any attempt to backdate beyond anchor is impossible.Condrey                  Expires 10 August 2026                [Page 14]Internet-Draft                PoP Examples                 February 20265.3.  Calibration Cross-Check   def verify_vdf_duration_claim(checkpoint, calibration):       # Extract values       iterations = checkpoint.vdf_proof.iterations       claimed_duration = checkpoint.vdf_proof.claimed_duration       calibration_rate = calibration.calibration_iterations       # Compute minimum possible duration       min_duration = iterations / calibration_rate       # Allow 10% tolerance for measurement variance       tolerance = 1.1       # Claimed duration must be at least min_duration       if claimed_duration < (min_duration / tolerance):           return INVALID("Claimed duration impossibly short")       # Claimed duration should not be excessively long       if claimed_duration > (min_duration * 10):           return WARNING("Claimed duration suspiciously long")       return VALID   # Example:   # iterations = 10,200,000,000   # calibration_rate = 8,500,000 / second   # min_duration = 10.2B / 8.5M = 1200 seconds   # claimed_duration = 1200 seconds: VALID6.  Absence Claim Example   This example demonstrates both chain-verifiable and monitoring-   dependent absence claims, showing how verifiers prove claims from   checkpoint data.6.1.  Chain-Verifiable Claim: max-single-delta-chars   Claim: No single checkpoint added more than 500 characters.Condrey                  Expires 10 August 2026                [Page 15]Internet-Draft                PoP Examples                 February 2026   absence-claim = {     1: 1,     2: {1: 500},     3: {       1: 1,       2: {         1: (0, 2),         2: 423       }     },     4: {       1: 1,       2: []     }   }   Verifier proof procedure:   def verify_max_single_delta_chars(evidence, threshold):       # (1) Verify chain integrity       assert verify_chain_hashes(evidence.checkpoints)       assert verify_vdf_linkage(evidence.checkpoints)       # (2) Extract max delta from checkpoint data       max_chars_added = 0       for checkpoint in evidence.checkpoints:           delta = checkpoint.delta           max_chars_added = max(max_chars_added, delta.chars_added)       # (3) Compare against threshold       if max_chars_added <= threshold:           return PROVEN(               observed=max_chars_added,               threshold=threshold,               confidence="proven"           )       else:           return FAILED(               observed=max_chars_added,               threshold=threshold           )6.2.  Monitoring-Dependent Claim: max-paste-event-chars   Claim: No paste event inserted more than 200 characters.Condrey                  Expires 10 August 2026                [Page 16]Internet-Draft                PoP Examples                 February 2026   absence-claim = {     1: 16,     2: {1: 200},     3: {       1: 2,       2: {         1: (0, 2),         2: 0,         3: 0.0       }     },     4: {       1: 2,       2: (         "Requires trust in clipboard monitoring",         "Coverage fraction: 0.98"       )     },     5: {       1: 2,       2: "macOS NSPasteboard notifications monitored continuously",       3: true     }   }   Trust chain for monitoring-dependent claim:Condrey                  Expires 10 August 2026                [Page 17]Internet-Draft                PoP Examples                 February 2026   Trust Chain Analysis:   (1) AE Trust Target: os-reported-events (2)      - Requires: OS correctly reports clipboard access      - macOS: NSPasteboard change notifications      - Trustworthiness: Moderate (depends on OS integrity)   (2) Verification Status: true      - Cross-reference: hardware-section contains SE attestation      - SE attests: witnessd binary hash, measurement time      - This increases confidence that AE was unmodified   (3) Monitoring Coverage: 98%      - monitoring-coverage.coverage-fraction = 0.98      - 2% gap when app was backgrounded      - Caveat: paste during gap would be undetected   (4) Resulting Confidence: HIGH (level 2)      - Not PROVEN (would require trustless verification)      - HIGH because: HW attestation + high coverage + OS events   Relying Party Decision:     - For academic submission: HIGH confidence acceptable     - For legal proceeding: May require additional corroboration7.  Attestation Result Example (.war)   This example shows a Verifier's Attestation Result after appraising   the multi-checkpoint Evidence packet from Section 3.   1463894560({     1: 1,     2: h'123e4567e89b12d3a456426614174000',     3: 1(1706840000),     4: 2,     5: 0.78,     6: [       {         1: 6,         2: true,         3: "Sequence numbers 0,1,2 consecutive",         4: 1       },       {         1: 7,Condrey                  Expires 10 August 2026                [Page 18]Internet-Draft                PoP Examples                 February 2026         2: true,         3: "All prev-hash values match prior checkpoint-hash",         4: 1       },       {         1: 4,         2: true,         3: "Total VDF time: 3000 seconds (threshold: 2700)",         4: 1       },       {         1: 8,         2: true,         3: "Cumulative entropy: 7.92 bits (threshold: 6.0)",         4: 1       },       {         1: 16,         2: true,         3: "No paste events detected (threshold: 500)",         4: 2       },       {         1: 100,         2: true,         3: "2/2 challenges passed, median response 1490ms",         4: 2       }     ],     7: 18(h'D28441A0A201260442313154...'),     8: "WritersLogic Verification Service v2.1",     9: {       1: "2.1.0",       2: "https://verify.writerslogic.com",       4: "pop-standard-v1"     },     10: (       "No hardware attestation in Evidence packet",       "Monitoring coverage: 98%",       "VDF calibration self-reported"     )   })   Key aspects of the Attestation Result:Condrey                  Expires 10 August 2026                [Page 19]Internet-Draft                PoP Examples                 February 2026   *  Verdict: likely-human (2)      Based on: checkpoint chain integrity, realistic jitter      distribution, presence challenges passed, no anomalies.   *  Confidence: 0.78 (high range)      Factors increasing: chain integrity proven, presence verified.      Factors limiting: no hardware attestation, self-reported      calibration.   *  Caveats document limitations:      Relying Parties can assess whether the caveats are acceptable for      their use case.  Academic submission may accept; legal proceeding      may require additional evidence.   *  Verifier signature enables trust chain:      Relying Party trusts WritersLogic Verification Service.  Signature      proves Attestation Result came from that Verifier.8.  Salt Mode Examples   This example demonstrates the three salt modes and their verification   flow differences.  The same document is shown with each salt mode.8.1.  Unsalted Mode (Default)   document-ref = {     1: {       1: 1,       2: h'e3b0c44298fc1c149afbf4c8996fb924           27ae41e4649b934ca495991b7852b855'     },     2: "essay.txt",     3: 4523,     4: 4401,     5: 0   }   Verification flow (unsalted):Condrey                  Expires 10 August 2026                [Page 20]Internet-Draft                PoP Examples                 February 2026   Verifier has: document content, Evidence packet   (1) Compute document hash     computed_hash = SHA256(document_content)     = h'e3b0c442...'   (2) Compare with Evidence     assert computed_hash == document_ref.content_hash.value     assert computed_hash == checkpoints{-1}.content_hash.value   Result: VERIFIED     - Anyone with the document can verify binding     - No additional information needed     - Document linkage is globally verifiable8.2.  Author-Salted Mode   document-ref = {     1: {       1: 1,       2: h'7f83b1657ff1fc53b92dc18148a1d65d           fc2d4b1fa3d677284addd200126d9069'     },     2: "confidential-report.txt",     3: 8934,     4: 8712,     5: 1,     6: h'9f86d081884c7d659a2feaa0c55ad015         a3bf4f1b2b0b822cd15d6c15b0f00a08'   }   Verification flow (author-salted):Condrey                  Expires 10 August 2026                [Page 21]Internet-Draft                PoP Examples                 February 2026   Verifier has: document content, Evidence packet   Verifier needs: salt (provided out-of-band by author)   (1) Author provides salt to chosen verifier     received_salt = h'deadbeefcafebabe1234567890abcdef'   (2) Verify salt matches commitment     computed_commitment = SHA256(received_salt)     assert computed_commitment == document_ref.salt_commitment   (3) Compute salted document hash     computed_hash = SHA256(received_salt || document_content)   (4) Compare with Evidence     assert computed_hash == document_ref.content_hash.value   Result: VERIFIED     - Only verifiers who received salt can verify     - Author controls who can verify document binding     - Useful for: unpublished manuscripts, confidential documents8.3.  Third-Party Escrowed Mode   document-ref = {     1: {       1: 1,       2: h'3a7bd3e2360a3d29eea436fcfb7e44c7           35d117c42d1c1835420b6b9942dd4f1b'     },     3: 12045,     4: 11823,     5: 2,     6: h'a591a6d40bf420404a011733cfb7b190         d62c65bf0bcda32b57b277d9ad9f146e'   }   Verification flow (escrowed):Condrey                  Expires 10 August 2026                [Page 22]Internet-Draft                PoP Examples                 February 2026   Verifier has: document content, Evidence packet   Verifier needs: salt (from escrow service)   (1) Request salt from escrow     - Verifier contacts escrow service     - Escrow verifies release conditions are met:       * Legal subpoena       * Author consent       * Time-based release       * Dispute resolution trigger     - Escrow provides salt if conditions satisfied   (2-4) Same as author-salted verification   Use cases:     - Litigation discovery: salt released upon court order     - Embargo periods: salt released after publication date     - Dispute resolution: salt released if authorship contested     - Dead man's switch: salt released if author inactive8.4.  Salt Mode Comparison    +================+============+================+==================+    | Aspect         | Unsalted   | Author-Salted  | Escrowed         |    +================+============+================+==================+    | Who can verify | Anyone     | Author's       | Conditions-based |    |                | with doc   | choice         |                  |    +----------------+------------+----------------+------------------+    | Privacy        | None (hash | High (author   | Medium (escrow   |    |                | public)    | controls)      | policy)          |    +----------------+------------+----------------+------------------+    | Typical use    | Published  | Unpublished    | Legal/regulatory |    |                | works      | drafts         |                  |    +----------------+------------+----------------+------------------+    | Salt storage   | N/A        | Author         | Third party      |    |                |            | responsibility |                  |    +----------------+------------+----------------+------------------+    | Lost salt      | N/A        | Cannot verify  | Escrow backup    |    | impact         |            |                |                  |    +----------------+------------+----------------+------------------+                                  Table 19.  Security Considerations   This document provides examples for the Proof of Process format.   Security considerations for the format itself are specified in the   main architecture document [I-D.condrey-rats-pop].Condrey                  Expires 10 August 2026                [Page 23]Internet-Draft                PoP Examples                 February 2026   Example data in this document is illustrative.  Implementations MUST   NOT use example values as actual cryptographic material.  All hash   values, keys, and signatures shown are placeholders.10.  IANA Considerations   This document has no IANA actions.  All registrations are specified   in the main architecture document.11.  References11.1.  Normative References   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels", BCP 14, RFC 2119, March 1997,              <https://www.rfc-editor.org/info/rfc2119>.   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC              2119 Key Words", BCP 14, RFC 8174, May 2017,              <https://www.rfc-editor.org/info/rfc8174>.   [RFC8949]  Bormann, C. and P. Hoffman, "Concise Binary Object              Representation (CBOR)", STD 94, RFC 8949, December 2020,              <https://www.rfc-editor.org/info/rfc8949>.11.2.  Informative References   [I-D.condrey-rats-pop]              Condrey, D., "Proof of Process: An Evidence Framework for              Digital Authorship Attestation", Work in Progress,              Internet-Draft, draft-condrey-rats-pop-00,              <https://datatracker.ietf.org/doc/html/draft-condrey-rats-              pop-00>.Author's Address   David Condrey   Writerslogic Inc   United States   Email: david@writerslogic.comCondrey                  Expires 10 August 2026                [Page 24]

[8]ページ先頭

©2009-2026 Movatter.jp