bigframes.pandas.to_timedelta#
- bigframes.pandas.to_timedelta(arg,unit:Literal['W','w','D','d','days','day','hours','hour','hr','h','m','minute','min','minutes','s','seconds','sec','second','ms','milliseconds','millisecond','milli','millis','us','microseconds','microsecond','µs','micro','micros']|None=None,*,session:Session|None=None)[source]#
Converts a scalar or Series to a timedelta object.
Note
BigQuery only supports precision up to microseconds (us). Therefore, when workingwith timedeltas that have a finer granularity than microseconds, be aware thatthe additional precision will not be represented in BigQuery.
Examples:
Converting a Scalar to timedelta
>>>importbigframes.pandasasbpd>>>scalar=2>>>bpd.to_timedelta(scalar,unit='s')Timedelta('0 days 00:00:02')
Converting a Series of integers to a Series of timedeltas
>>>int_series=bpd.Series([1,2,3])>>>bpd.to_timedelta(int_series,unit='s')0 0 days 00:00:011 0 days 00:00:022 0 days 00:00:03dtype: duration[us][pyarrow]
- Parameters:
arg (int,float,str,Series) – The object to convert to a dataframe
unit (str,default 'us') –
Denotes the unit of the arg for numericarg. Defaults to
"us".Possible values:
’W’
’D’ / ‘days’ / ‘day’
’hours’ / ‘hour’ / ‘hr’ / ‘h’ / ‘H’
’m’ / ‘minute’ / ‘min’ / ‘minutes’
’s’ / ‘seconds’ / ‘sec’ / ‘second’
’ms’ / ‘milliseconds’ / ‘millisecond’ / ‘milli’ / ‘millis’
’us’ / ‘microseconds’ / ‘microsecond’ / ‘micro’ / ‘micros’
- Returns:
Return type depends on input- Series: Series of duration[us][pyarrow] dtype- scalar: timedelta
- Return type: