bigframes.pandas.Series.loc#
- propertySeries.loc:LocSeriesIndexer#
Access a group of rows and columns by label(s) or a boolean array.
Examples:
>>>df=bpd.DataFrame([[1,2],[4,5],[7,8]],...index=['cobra','viper','sidewinder'],...columns=['max_speed','shield'])>>>df max_speed shieldcobra 1 2viper 4 5sidewinder 7 8[3 rows x 2 columns]
Single label. Note this returns the row as a Series.
>>>df.loc['viper']max_speed 4shield 5Name: viper, dtype: Int64
List of labels. Note using [[]] returns a DataFrame.
>>>df.loc[['viper','sidewinder']] max_speed shieldviper 4 5sidewinder 7 8[2 rows x 2 columns]
Slice with labels for row and single label for column. As mentionedabove, note that both the start and stop of the slice are included.
>>>df.loc['cobra','shield']np.int64(2)
Index (same behavior as df.reindex)
>>>df.loc[bpd.Index(["cobra","viper"],name="foo")] max_speed shieldcobra 1 2viper 4 5[2 rows x 2 columns]
Conditional that returns a boolean Series with column labels specified
>>>df.loc[df['shield']>6,['max_speed']] max_speedsidewinder 7[1 rows x 1 columns]
Multiple conditional using | that returns a boolean Series
>>>df.loc[(df['max_speed']>4)|(df['shield']<5)] max_speed shieldcobra 1 2sidewinder 7 8[2 rows x 2 columns]
Please ensure that each condition is wrapped in parentheses ().
Set value for an entire column
>>>df.loc[:,'max_speed']=30>>>df max_speed shieldcobra 30 2viper 30 5sidewinder 30 8[3 rows x 2 columns]
- Returns:
Indexers object.
- Return type:
bigframes.core.indexers.LocSeriesIndexer
On this page