bigframes.pandas.DataFrame.update#

DataFrame.update(other,join:str='left',overwrite=True,filter_func=None)[source]#

Modify in place using non-NA values from another DataFrame.

Aligns on indices. There is no return value.

Examples:

>>>df=bpd.DataFrame({'A':[1,2,3],...'B':[400,500,600]})>>>new_df=bpd.DataFrame({'B':[4,5,6],...'C':[7,8,9]})>>>df.update(new_df)>>>df   A  B0  1  41  2  52  3  6[3 rows x 2 columns]
Parameters:
  • other (DataFrame, orobject coercible into a DataFrame) – Should have at least one matching index/column labelwith the original DataFrame. If a Series is passed,its name attribute must be set, and that will beused as the column name to align with the original DataFrame.

  • join ({'left'},default 'left') – Only left join is implemented, keeping the index and columns of theoriginal object.

  • overwrite (bool,default True) – How to handle non-NA values for overlapping keys:True: overwrite original DataFrame’s valueswith values fromother.False: only update values that are NA inthe original DataFrame.

  • filter_func (callable(1d-array)-> bool 1d-array,optional) – Can choose to replace values other than NA. Return True for valuesthat should be updated.

Returns:

This method directly changes calling object.

Return type:

None

Raises:

ValueError – If a type of join other thanleft is provided as an argument.

On this page

This Page