bigframes.pandas.DataFrame.interpolate#
- DataFrame.interpolate(method:str='linear')→DataFrame[source]#
Fill NA (NULL in BigQuery) values using an interpolation method.
Examples:
>>>df=bpd.DataFrame({...'A':[1,2,3,None,None,6],...'B':[None,6,None,2,None,3],...},index=[0,0.1,0.3,0.7,0.9,1.0])>>>df.interpolate() A B0.0 1.0 <NA>0.1 2.0 6.00.3 3.0 4.00.7 4.0 2.00.9 5.0 2.51.0 6.0 3.0[6 rows x 2 columns]>>>df.interpolate(method="values") A B0.0 1.0 <NA>0.1 2.0 6.00.3 3.0 4.6666670.7 4.714286 2.00.9 5.571429 2.6666671.0 6.0 3.0[6 rows x 2 columns]
- Parameters:
method (str,default 'linear') – Interpolation technique to use. Only ‘linear’ supported.‘linear’: Ignore the index and treat the values as equally spaced.This is the only method supported on MultiIndexes.‘index’, ‘values’: use the actual numerical values of the index.‘pad’: Fill in NaNs using existing values.‘nearest’, ‘zero’, ‘slinear’: Emulatesscipy.interpolate.interp1d
- Returns:
Returns the same object type as the caller, interpolated atsome or all
NaNvalues- Return type:
On this page