bigframes.geopandas.GeoSeries.to_numpy#
- GeoSeries.to_numpy(dtype=None,copy=False,na_value=<no_default>,*,allow_large_results=None,**kwargs)→ndarray#
A NumPy ndarray representing the values in this Series or Index.
Examples:
>>>ser=bpd.Series(pd.Categorical(['a','b','a']))>>>ser.to_numpy()array(['a', 'b', 'a'], dtype=object)
Specify the dtype to control how datetime-aware data is represented. Usedtype=object to return an ndarray of pandas Timestamp objects, each withthe correct tz.
>>>ser=bpd.Series(pd.date_range('2000',periods=2,tz="CET"))>>>ser.to_numpy(dtype=object)array([Timestamp('1999-12-31 23:00:00+0000', tz='UTC'), Timestamp('2000-01-01 23:00:00+0000', tz='UTC')], dtype=object)
Or
dtype=datetime64[ns]to return an ndarray of native datetime64 values.The values are converted to UTC and the timezone info is dropped.>>>ser.to_numpy(dtype="datetime64[ns]")array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00.000000000'], dtype='datetime64[ns]')
- Parameters:
dtype (str ornumpy.dtype,optional) – The dtype to pass to
numpy.asarray().copy (bool,default False) – Whether to ensure that the returned value is not a view onanother array. Note that
copy=Falsedoes notensure thatto_numpy()is no-copy. Rather,copy=Trueensure thata copy is made, even if not strictly necessary.na_value (Any,optional) – The value to use for missing values. The default value dependsondtype and the type of the array.
allow_large_results (bool,default None) – If not None, overrides the global setting to allow or disallowlarge query results over the default size limit of 10 GB.
**kwargs – Additional keywords passed through to the
to_numpymethodof the underlying array (for extension arrays).
- Returns:
A NumPy ndarray representing the values in thisSeries or Index.
- Return type:
numpy.ndarray