Movatterモバイル変換


[0]ホーム

URL:


Přeskočit na obsah
WikipedieWikipedie: Otevřená encyklopedie
Hledání

Mechanika

Z Wikipedie, otevřené encyklopedie

Mechanika je oborfyziky, který se zabývámechanickým pohybem, tedy přemísťovánímtělesprostoru ačase a změnamivelikostí atvarů těles. Meziveličiny, které nejčastěji používá patří poloha,rychlost,zrychlení,síla,energie ahybnost.

Mechanika patří k nejstarším oborům fyziky a od počátku byla úzce spojena s technickými aplikacemi, např. s tvorboumechanických strojů. Je založena na principech tvořících obecnější teorii (např.speciální teorie relativity,kvantová teorie,teorie chaosu).

Rozdělení mechaniky

[editovat |editovat zdroj]

Podle vztahu k příčinám pohybu

[editovat |editovat zdroj]

Ve vztahu k příčinám studovaného pohybu lze mechaniku rozdělit na

  • kinematiku - Kinematika popisujepohyb těles bez ohledu na příčiny pohybu. Zabývá se studiem pohybu těles jen z geometrického a časového hlediska.[1]
  • dynamiku - Dynamika se zabývá příčinami pohybu. Studuje souvislosti mezi pohybem asilami, které pohyb způsobují. Speciálním případem dynamiky jestatika, která se zabývá vyšetřovánímrovnováhy sil.[1]

Podle skupenství

[editovat |editovat zdroj]

Podle působenísil na tělesa různéhoskupenství lze mechaniku rozdělit na

Podle způsobu aproximace reálného tělesa

[editovat |editovat zdroj]

Fyzikální přístup ke studiu reality umožňuje provádět zjednodušení při zachování dostatečné přesnosti výsledku (např. nahrazeníplanety pohybující se v gravitačním polihmotným bodem může být v mnoha případech postačující). Tento přístup umožňuje rozdělit mechaniku na

Mechanika těles

[editovat |editovat zdroj]

Část mechaniky zabývající se zkoumáním vlastností a pohybu těles (nikoliv hmotných bodů) v prostoru a změnami jejich velikostí a tvarů bývá označována jakomechanika těles. Mechanika těles využívá nástrojůmechaniky soustavy hmotných bodů amechaniky kontinua, tzn. reálná tělesa jsou nahrazovánasoustavou hmotných bodů nebo představou o spojitě rozložené hmotě (tzv.kontinuu).Vlastnosti tělesa jsou určovány podmínkami kladenými na vazby mezi jednotlivými hmotnými body soustavy popisující těleso (popř.viskozitou při popisu kontinuem). Síla těchto vazeb má úzký vztah keskupenství tělesa. Podle těchto vazeb lze mechaniku těles dělit na

Podle použitých fyzikálních principů

[editovat |editovat zdroj]

Podle fyzikálních principů, na nichž jsou vystavěny postupy lze mechaniku rozdělit na

Podle vztahu k jiným oborům

[editovat |editovat zdroj]

aj.

Aplikace mechaniky

[editovat |editovat zdroj]

Historie

[editovat |editovat zdroj]

Počátky

[editovat |editovat zdroj]

K prvnímu využívání principů patřících do mechaniky docházelo již za dobpředchůdců současného člověka. Bylo to využívání jednoduchých kamenných, kostěných, dřevěných a později také kovových nástrojů, které usnadňovaly každodenní život a přinášely výhodu v boji o přežití. Snadno si lze představit, že se pravěký člověk naučil používat páku k manipulaci s břemeny, využíval vlastnosti pohybu těles při šikmém vrhu, uměl házet oštěpem, později střílet z luku, a znal také chování primitivních plavidel na vodě. Nejstarší nalezené kosterní pozůstatky a kamenné nástroje příslušníka rodu Homo, pocházejí z doby před cca dvěma miliony let.[2]

Velký pokrok techniky nastal s rozvojem zemědělství, díky jehož trvalejším přebytkům a možnosti tvoření zásob byl umožněn rozvoj řemesel.[3][4] Závlahové zemědělství je spojeno se vznikem prvních civilizací v okolí velkých řek,Eufratu aTigridu,Nilu,Indu aŽluté řeky. Počátky neolitického zemědělství v Mezopotámii a v Egyptě spadají do doby někdy kolem 8 000 př. n. l.[3]

JižSumerové využívali princip kola.

Sumerové aBabyloňané vyvinuli vyspělou techniku, při své stavební činnosti využívali vlastnostijednoduchých strojů a měřili délky, obsahy, objemy a čas a také vážili. Sumerům pak náleží jedna z největších vymožeností lidstva - vynálezkola, které je vlastně jednou z aplikací páky.[3]

Egyptská kultura se vyvíjela souběžně se sumersko-babylonskou a částečně pod jejím vlivem. Dochovala se zobrazení rovnoramenných vah a závaží v podobě prstenců z drahých kovů. Egypťané projektovali, vytyčovali a stavěli velkolepé stavby,pyramidy a chrámy. Na rozdíl od Babyloňanů nezanechali rozsáhlé knihovny ani systematické záznamy o astronomických úkazech. Přesto víme, že prováděli velmi přesná astronomická pozorování, mimo jiné také pomocí přístroje zvanéhomerchet, jakéhosivizíru.[3]

Čínská civilizace patří k nejstarším na světě, ve 3. tisíciletí př. n. l. vstoupila do doby bronzové. O tisíc let později se rozvíjí pěstování rýže, výroba hedvábí, kolová doprava, vzniká písmo, literatura a věda - matematika, astronomie. Z hlediska přírodovědy patří mezi nejdůležitější spisyKniha proměn, která se pokouší vystihnout jednotu světa, jeho proměny a hybné síly, vznik a zánik věcí, vztahy nebe a země a místo člověka v přírodě.[3]

Thales z Milétu (asi 625-547 př. n. l.), považovaný za prvního evropského fyzika

PříchodŘeků z původních sídel kdesi v eurasijských stepích se odehrál někdy začátkem 2. tisíciletí př. n. l. a souvisel s velkým stěhováním nejstarších indoevropských národů. Někdy v 8. st. př. n. l., po několika "temných stoletích" vznikáHomérovaIlias aOdyssea, jimiž začíná evropská literatura a v 7. st. př. n. l. se naplno začíná rozvíjet kultura,filozofie a věda, základ evropského racionálního myšlení a technické civilizace, to vše během několika století, kterým se říká "řecký zázrak". Oproti ostatním dávným civilizacím, které prošly tisíciletým vývojemmatematiky,astronomie apřírodních věd, se Řekové začali pokoušet o rozumové,logické vysvětlování jevů, hledání a vyjadřování přírodních zákonů, formulování matematických vět a jejich dokazování. Znalostgeometrie umožnila Řekům rozvinout dvě oblasti fyziky -statiku, tedy část mechaniky zabývající se rovnováhou akatoptriku, část optiky zabývající se lomem světla a popisem zrcadel. Poprvé oddělilináboženství amytologii od filozofie a vytvořili prvníracionální modely světa.[5]

Iónská přírodní filozofie se zrodila v maloasijskémMilétu. Tamní filozofická škola hledala jednotnou podstatu světa v podobě nějaké univerzální pralátky (arché), podobně jako moderní fyzika hledá jednotný základ všech druhů sil. Za prvního zionskýchfilozofů a vůbec prvního evropského vědce, astronoma, matematika a fyzika považujemeThaleta z Milétu (asi 625-547 př. n. l.). Za pralátku považoval Thales všepronikající a všudypřítomnou vodu. Jeho přítel a žákAnaximandros s ním v tomto nesouhlasil a za pralátku a prapočátek všeho považoval cosi neurčeného, neomezeného, co nazývalapeiron, princip všeho vznikání a zanikání, které trochu připomíná čínskétao. Dnes bychom si jí mohli představit třeba jako určitou obdobuenergie.[5] Na rozdíl od Tháleta považoval Zemi za válec, který se nachází ve středu světa a volně se v něm vznáší, není ničím poután a na svém místě se udržuje jen tím, že je od všech konců stejně vzdálen. Země nemůže padat "dolů", protože ve světovém prostoru není určeno, kde je "nahoře" a kde "dole". To je geniální myšlenka, Anaximandros zde poprvé použil fyzikální princip symetrie.[5] Dalšími z milétských byliAnaximenés, který považoval za pralátku vzduch (pneuma),Hérakleitos, který za pralátku považoval oheň aAnaxagorás (500-428 př. n. l.), který je počítán k posledním představitelům ionské filozofie. Pro iónské Řeky byly samozřejmou součástí životakola s loukotěmi, stavbaplachetnic, lodí poháněnýchvesly, používánívah,olovnice,vodováhy,úhloměru,kružítka,kleští, kovářskéhoměchu,páky,klínu,kladky,sifonu,vodních hodin.[6]

Archytas (428-365 př. n. l.), je považován za zakladatele řecké mechaniky

K dalším, kteří významně zasáhli do dějin matematiky a fyziky a ovlivnili mnohé následovníky, bylipythagoreici, vlastně příslušníci jakési sekty pod vedenímPythagora (asi 580-500 př. n. l.). Poprvé uvedli Zemi do pohybu, i když tato myšlenka se prosadila až koncem novověku a astronomicky byla prokázána s konečnou platností až v 18. století. Do jejich řad bývají počítániEmpedoklés,Filolaos,Eudoxos, Hérakleitos a za zakladatele řecké mechaniky je považovánArchytas z Tarentu (428-365 př. n. l.). Matematické metody používal i k praktickým fyzikálním aplikacím a k řešení technických problémů. Zabýval se teorií kladky, kola na hřídeli a šroubu, konstruoval mechanizmy poháněné stlačeným vzduchem.[5]

Řekové si nedovedli teoreticky poradit s nejzajímavějšími vlastnostmi přírody, kterou představují pohyb, změna, vznik a zánik věcí. Těmito otázkami se zabývalieleaté na území jižní Itálie. Nejznámějším z eleatů bylZenón (490-430 př. n. l.), spojovaný s takzvanýmiaporiemi, rozpornými myšlenkovými důkazy, podle nichž pohyb a změna nemohou existovat. Teprve objev matematické analýzy v 17. století ukázal, i když ne dokonale, jak popsat mechanický pohyb a jak zacházet s nekonečně malými a nekonečně velkými veličinami.[5]

Leukippos z Milétu (asi 490-420 př. n. l.) řešil eleatské problémy nekonečné dělitelnosti tak, že při dělení dojdeme až k malým částečkám, které už dělit nelze a nazval je nedělitelnými, tedyatomy. Obdobně předpokládal, že i prostor má nedělitelné části - amery. Vznikl takatomismus, který po Leukiposovi rozvíjelDémokritos (asi 460-370 př. n. l.), jehož atomy jsou v neustálém pohybu, který probíhá podle nutnosti, nic není ponecháno náhodě. Jde tedy o strohý mechanickýdeterminismus, podobně jako později uNewtona.[5]

Starověk

[editovat |editovat zdroj]
Výřez zRafaelova obrazuAthénská škola neboliLykeion (Lyceum), založenéAristotelem

Aristotelés, jako pravděpodobně největší z antických filozofů, který ovlivnil evropské myšlení na více než dvě tisíciletí, položil základy formální logiky jako způsobu vědeckého uvažování. Prováděl pozorování a nevyhýbal se ani experimentování. Pokusil se o vysvětlení zákonitostí pohybu jak pozemských, tak nebeských těles a může být v podstatě považován za prvního fyzika, i když převážně spekulativního. V Athénách založil kolem roku 335 př. n. l. vlastní školuLykeion (odtud dnešní lyceum), ke které náležela velká knihovna. Jeho dílo je nesmírně rozsáhlé a je jedno z největších, jaké kdy jednotlivec vytvořil. V mnoha svých závěrech se mýlil, není však jeho vinou, že jeho učení bylo vestředověkudogmatizováno a tím bohužel zčásti brzdilo vědecký pokrok.[7]

Z přelomu 4. a 3. stol. př. n. l. se dochovala první známá kniha o mechanice, spis nazvanýMechanické problémy.[8] Za autora byl považován Aristotelés, podle novějších výzkumů ale pochází z doby o něco pozdější, a napsal ho pravděpodobně někdo z jeho žáků zperipatetické školy, pravděpodobně právěArchytas z Tarentu. Někdy se autor uvádí jako "Pseudoaristoteles".

Múseion, velká Alexandrijská knihovna

Fyzika, a zejména mechanika, dosáhla vhelénistickém období (cca 4. až 1. stol. př. n. l.), zejména vAlexandrii, vysokého stupně poznání. Byly odhaleny základní zákony statiky, rovnováhy a skládání sil, postupy zjišťování polohy těžiště těles, zákony hydrostatického tlaku, plování a mnoho dalšího. Zakladatelem alexandrijské mechaniky bylKtesibios, pravděpodobně první z knihovníků neboli "vědeckých ředitelů"[8]Múseia, které navázalo naAristotelovu athénskou školuLykeion a na téměř 600 let se stalo významným střediskem vědy, výzkumu, výuky, uchovávání a rozvíjení nových poznatků. Ktesibiovým následovníkem bylFilón z Bizantia, od kterého se dochovaly úryvky ze souboru spisů, týkajících se použití mechaniky a válečné techniky.Stratón z Lampsaku, který po Aristotelovi aTheofrastovi v 1. polovině 3. stol. př. n. l. řídil Lykeium, strávil nejprve také několik let v královském paláci v Alexandrii, kde se podílel se na vzniku Múseia. Zabýval se mechanikou těles, kapalin i plynů.

V Řeckých Syracusách působil za vládyHierona II. ve 3. stol. př. n. l. největší z matematiků, fyziků a techniků starověku -Archimédés. Udržoval pravidelnou korespondenci s matematiky v Múseionu. Ve svém díleO metodě, které bylo objeveno až počátkem 20. století, využívá mechaniku a fyzikální představy k intuitivnímu zjištění výsledku a až poté přechází k přesnému důkazu. Zanechal 13 traktátů, věnovaných konkrétním problémům matematiky a fyziky. Pracoval na důkladné teorii mechanické rovnováhy založené na pojmechtěžiště astatický moment, které také definoval. Na toto téma se zachoval jeho traktátO rovnováze neboli těžištích rovinných obrazců. PodEukleidovým vlivem se snažil oaxiomatizacistatiky.[9] Zabýval se principy činnosti jednoduchých strojů –páky,kladky,nakloněné roviny,klínu aozubeného kola a objevil a formuloval zákonitosti jejich rovnováhy. Významně přispěl k poznatkům hydrostatiky, slavný Archimédův zákon zformuloval v traktátuO plovoucích tělesech. Poslední dva roky svého života, ač do té doby téměř výhradně teoretický vědec, věnoval své umění plně do služeb obrany rodného města a pomocí válečných mechanických strojů, katapultů, balistů, beranů a jeřábů s chapadly ničil římské útočníky.

Schéma větrného kola pohánějícího varhany, vynálezHéróna Alexandrijského

Nejvýznamnějším fyzikem alexandrijské mechaniky bylHérón Alexandrijský. Jeho spisMechanika z 1. stol. n. l. se dochoval pouze v arabském překladu pod názvemHeronova kniha o zvedání těžkých předmětů a v citátech Pappa Alexandrijského. V první části tohoto díla se již objevuje skládání pohybů podle pravidla rovnoběžníku, zjišťování polohy těžišť těles, reakce v opěrných bodech. Klasifikuje i 5 jednoduchých strojů, jejich vzájemné propojení a také složitější stroje jako jeřáby, zvedáky, lisy, apod.[10]

Abecední seznam dílčích témat se vztahem k mechanice

[editovat |editovat zdroj]
ikona
Tato část článku potřebuje úpravy.
Můžete Wikipedii pomoci tím, že jivylepšíte. Jak by měly články vypadat, popisují stránkyVzhled a styl,Encyklopedický styl aOdkazy.

Konkrétní problémy:formátování

Aerodynamický tvar -Aerodynamická vztlaková síla -Aerodynamika -Aerostatika -Afélium -Aneroid -Apogeum -Archimédův zákon -Atmosférický tlak

Barograf -Barometr -Bernoulliho rovnice -Biomechanika

Centrální gravitační pole -Coriolisova síla

Dostředivá síla -Dostředivé zrychlení -Dvojice sil

Einsteinův princip relativity -Elevační úhel

Frekvence

Galileiho princip relativity -Gravitace -Gravitační pole -Gravitační polohová energie -Gravitační potenciální energie -Gravitační síla -Gravitační zrychlení

Hmotný bod -Homogenní gravitační pole -Hybnost -Hydraulické zařízení -Hydrodynamický paradox -Hydrodynamika -Hydrostatický paradox -Hydrostatická tlaková síla -Hydrostatický tlak -Hydrostatika

Impuls síly -Inerciální vztažná soustava

Jednoduchý stroj

Kartézská soustava souřadnic -Keplerovy zákony -Kinetická energie -Kmitočet -Kladka -Kladkostroj -Klidové tření -Klín -Kolo na hřídeli -1. kosmická rychlost -2. kosmická rychlost -Kruhová rychlost -Křivočarý pohyb

Laminární proudění

Manometr -Mechanická energie -Mechanická práce -Mechanický stroj -Mechanika kapalin a plynů -Mechanika tekutin -Měrná tíha -Moment setrvačnosti -Moment síly

Nakloněná rovina -Neinerciální vztažná soustava -Nerovnoměrný pohyb -Nerovnoměrný pohyb po kružnici -Nerovnoměrný přímočarý pohyb -Newtonovy pohybové zákony -Newtonův gravitační zákon -1. Newtonův pohybový zákon -2. Newtonův pohybový zákon -3. Newtonův pohybový zákon -Normální atmosférický tlak

Objemový průtok -Odpor prostředí -Odporová síla -Odstředivá síla -Osa otáčení -Otáčivý pohyb

Páka -Pascalův zákon -Perigeum -Perihelium -perioda (fyzika) -Pevná kladka -Plování těles -Podtlak -Pohyb -Pohybová energie -Pohyb po kružnici -Pohyb tělesa kolem Slunce -Pohyb tělesa kolem Země -Polární soustava souřadnic -Poloha tělesa -Polohová energie -Polohová energie pružnosti -Polohový vektor -Posuvný pohyb -Potenciální energie -Potenciální energie pružnosti -Pneumatické zařízení -Princip nezávislosti pohybů -Proudění -Průvodič -Přetlak -Převody -Příkon -Přímočarý pohyb -Pumpa

Rameno valivého odporu -Relativita pohybu -Rovnováha sil -Rovnoměrný pohyb -Rovnoměrný pohyb po kružnici -Rovnoměrný přímočarý pohyb -Rovnoměrně zrychlený pohyb po kružnici -Rovnoměrně zrychlený přímočarý pohyb -Rovnovážná poloha -Rozklad sil -Rychlost

Setrvačná síla -Síla -Skládání pohybů -Skládání rychlostí -Skládání sil -Smykové tření -Smykový pohyb -Součinitel klidového tření -Součinitel smykového tření -Součinitel valivého tření -Soustava souřadnic -Spojené nádoby -Stabilita -Stálá rovnovážná poloha

Šroub

Tekutina -Těžiště -Těžnice -Tíha -Tíhová síla -Tíhové zrychlení -Trajektorie -Translace -Tření -Třecí síla -Tuhé těleso -Turbulentní proudění

Účinnost -Úhlová dráha -Úhlová rychlost -Úhlové zrychlení -Úniková rychlost

Valivé tření -Valivý odpor -Valivý pohyb -Volná kladka -Volná rovnovážná poloha -Volný pád -Vratká rovnovážná poloha -Vrh svislý -Vrh vodorovný -Vrh šikmý -Výkon -Vztažná soustava -Vztlaková síla

Zákon akce a reakce -Zákon setrvačnosti -Zákon síly -Zákon zachování hybnosti -Zákon zachování mechanické energie -Zrychlení

Abecední seznam veličin

[editovat |editovat zdroj]

Coriolisova síla -Dostředivá síla -Dostředivé zrychlení -Dráha -Dvojice sil -Frekvence -Gravitační síla -Gravitační zrychlení -Hybnost -Hydrostatická tlaková síla -Hydrostatický tlak -Mechanická energie -Mechanická práce -Měrná tíha -Moment setrvačnosti -Moment síly -Odporová síla -Odstředivá síla -perioda (fyzika) -Pohybová energie -Polohová energie -Příkon -Rychlost -Setrvačná síla -Tíha -Tlaková síla -Třecí síla -Účinnost -Úhlová dráha -Úhlová rychlost -Úhlové zrychlení -Výkon -Vztlaková síla -Zrychlení

Reference

[editovat |editovat zdroj]
  1. abJaroslav Kadlčák, Jiří Kytýr, Statika stavebních konstrukcí I., VUTIUM, Brno 1998,ISBN 80-214-1204-6, str. 17,18
  2. Ivan Štoll, Dějiny fyziky, Prometheus s.r.o., Praha 2011, dotisk 1. vydání,ISBN 978-80-7196-375-2, str. 23
  3. abcdeIvan Štoll, Dějiny fyziky, Prometheus s.r.o., Praha 2011, dotisk 1. vydání,ISBN 978-80-7196-375-2, str. 29-48
  4. Jan Sokol, Moc, peníze a právo; Esej o společnosti a jejích institucích; Vydavatelství a nakladatelství Aleš Čeněk, s.r.o., Plzeň 2007;ISBN 978-80-7380-066-6, str.58
  5. abcdefIvan Štoll, Dějiny fyziky, Prometheus s.r.o., Praha 2011, dotisk 1. vydání,ISBN 978-80-7196-375-2, str. 51-92
  6. Ivo Kraus, Fyzika od Tháleta k Newtonovi: kapitoly z dějin fyziky, Academia, Praha 2007, 1. vydání, Edice Galileo,ISBN 978-80-200-1540-2, str. 13
  7. Ivan Štoll, Dějiny fyziky, Prometheus s.r.o., Praha 2011, dotisk 1. vydání,ISBN 978-80-7196-375-2, str. 67-74
  8. abIvan Štoll, Dějiny fyziky, Prometheus s.r.o., Praha 2011, dotisk 1. vydání,ISBN 978-80-7196-375-2, str. 74-78
  9. SOUČEK, Ludvík.Kdo byl kdo. Díl I.. Praha: Albatros, 1980. 
  10. Ivan Štoll, Dějiny fyziky, Prometheus s.r.o., Praha 2011, dotisk 1. vydání,ISBN 978-80-7196-375-2, str. 87

Související články

[editovat |editovat zdroj]

Externí odkazy

[editovat |editovat zdroj]
  • Obrázky, zvuky či videa k tématumechanika na Wikimedia Commons
  • Slovníkové heslomechanika ve Wikislovníku
Autoritní dataEditovat na Wikidatech
Portály:Fyzika
Citováno z „https://cs.wikipedia.org/w/index.php?title=Mechanika&oldid=25329317
Kategorie:
Skryté kategorie:

[8]ページ先頭

©2009-2025 Movatter.jp