Movatterモバイル変換


[0]ホーム

URL:


Přeskočit na obsah
WikipedieWikipedie: Otevřená encyklopedie
Hledání

DNA

Tento článek patří mezi nejlepší v české Wikipedii. Kliknutím získáte další informace.
Z Wikipedie, otevřené encyklopedie
Tento článek je o nositelce genetické informace.Další významy jsou uvedeny na stránceDNA (rozcestník).
Možná hledáte:dna, metabolické onemocnění.
Strukturadvoušroubovice DNA. V této formě se vyskytuje většina DNA například v lidských buňkách. Dvoušroubovice je tvořena dvěma řetězcinukleotidů

Deoxyribonukleová kyselina, běžně označovanáDNA (z anglického deoxyribonucleic acid, česky zřídka i DNK), jenukleová kyselina, nositelkagenetické informace všech organismů s výjimkou některýchnebuněčných, u nichž hraje tuto úlohuRNA (např.RNA viry). DNA je tedy proživot velmi důležitou látkou, která ve své struktuře kóduje abuňkám zadává jejich program, a tím předurčujevývoj a vlastnosti celéhoorganismu. U eukaryotických organismů (jako jsou např.rostliny aživočichové) je DNA hlavní složkouchromatinu, směsi nukleových kyselin a proteinů, a je uložena zejména uvnitřbuněčného jádra, zatímco u prokaryot (jako jsou např.bakterie aarchea) se DNA nachází volně v cytoplazmě.

DNA jebiologická makromolekulapolymer v podobě řetězcenukleotidů. Nukleotidy jsou vždy složeny z cukrudeoxyribózy,fosfátové skupiny a jedné ze čtyřnukleových bází. Informační funkci mají právě báze, jimiž může býtadeninA,guaninG,cytosinC nebothyminT. První dvě patří mezipuriny, zbylé mezi tzv.pyrimidiny. Dvě vlákna DNA se často spojují a vytvářejídvoušroubovici, jejíž tvar je tak slavný, že se stal kulturní ikonou moderní doby.[1] Dvoušroubovici DNA tvoří dvě navzájem spletenéšroubovice, každá mířící opačným směrem (jsou antiparalelní). Mezi protilehlými bázemi obou vláken se vytvářejívodíkové můstky, a to tři mezi guaninem a cytosinem nebo dva mezi adeninem a thyminem. Existují i jiné způsoby uspořádání řetězců, vymykající se tradiční představě dvoušroubovice.

Deoxyribonukleová kyselina je středem zájmu vědců nejen z biologických oborů a byly vyvinuty promyšlené techniky její izolace, separace, barvení,sekvenování, umělé syntézy a manipulace s ní pomocí metodgenového inženýrství. Všechny tyto postupy jsou důležité i pro lékaře, kriminalisty či evoluční biology – DNA je zásadním materiálem v diagnostice nemocí,testech otcovství, přivyšetřování zločinů, přípravě plodin s novými vlastnostmi či třeba hledání příbuzenských vztahů mezi organismy.

Historie výzkumu

[editovat |editovat zdroj]
James D. Watson aFrancis Crick (vpravo), podávající si ruce sMaclynem McCartym (vlevo)
Podrobnější informace naleznete v článkudějiny objevu a výzkumu DNA.

Deoxyribonukleová kyselina byla popsána roku1869, kdy švýcarský lékařFriedrich Miescher zkoumal složeníhnisu z nemocničníchobvazů. Z jader bílých krvinek přítomných v tomto hnisu získal jisté množství nukleových kyselin, které souhrnně nazývalnuklein.[2] Na počátku20. století Phoebus Levene rozpoznal, že DNA se skládá z cukrů, fosfátů a bází.[3]

O funkci DNA toho dlouho nebylo moc známo. První důkaz o roli DNA v přenosu genetické informace přinesl v roce1944Averyho–MacLeodův–McCartyho experiment, který provedliOswald Avery společně s Colinem MacLeodem aMaclynem McCartym. Sérií pokusů s transformacípneumokoků zjistili, že DNA je genetickým materiálem buněk.[4] Další důkaz přinesl v roce1952Hersheyho–Chaseové experiment.

Patrně nejslavnějším milníkem ve výzkumu DNA bylo odhalení její trojrozměrné struktury. Správnýdvoušroubovicový model poprvé představili v roce1953 v časopiseNatureJames D. Watson aFrancis Crick, pozdější laureátiNobelovy ceny.[5] Vycházeli přitom z rentgenové difrakční analýzy, kterou o rok dříve provedliRosalind Franklinová aRaymond Gosling a publikovali ve stejném čísle Nature. Další článek v tomto vydání předložil i Maurice Wilkins.[6] V roce 1957 předložil v té době již slavný Crick sérii pravidel, které se označují jakocentrální dogma molekulární biologie a popisují vztahy mezi DNA, RNA a proteiny.[7] O rok později slavnýMeselsonův–Stahlův experiment umožnil poznat způsobreplikace DNA v buňkách.[8] Genetický kód rozluštili na počátku 60. letHar Gobind Khorana,Robert W. Holley aMarshall Warren Nirenberg.[9]

Původ

[editovat |editovat zdroj]

Přítomnost nukleových kyselin, tedy DNA a RNA, je společnou vlastností všech známých pozemskýchorganismů. Veškerý život je založen na koexistenci těchto nukleových kyselin s bílkovinami, nicméně není zcela jasné, jak se vztah mezi DNA a bílkovinami vyvinul. Podle některých hypotéz nejprve existovaly bílkoviny a až následně vznikly nukleové kyseliny, nicméně nejvíce příznivců má zřejmě v současnosti představa, že prapůvodní látkou byla nukleová kyselina, která byla schopnabiologické evoluce. Podle teorieRNA světa však hlavní roli hrála nejprve spíše RNA a teprve posléze přejala hlavní roli DNA.[10] Doklady ve prospěch takových hypotéz jsou však vždy nepřímé, protože nejsou k dispozici dostatečně staré vzorky DNA. Život vznikl již před několika miliardami let, jenže už po několika desítkách tisíců let klesá množství DNA na setinu původního stavu. Studie v časopiseNature z let 2000 a 2002 nicméně popisují nález až 450 milionů let starých vzorkůbakteriální DNA uchovaných v solných krystalech,[11][12] dále existuje i řada dalších, více nebo méně spolehlivých studií.

Stavba

[editovat |editovat zdroj]
Chemická struktura krátkého úseku DNA: v každém ze čtyř nukleotidů jedeoxyribóza,fosfátová skupina a dále jedna náhodnánukleová báze (ze čtyř možných)

Stavbu DNA je možno zkoumat na několika úrovních. Pořadínukleotidů v lineárním dvouvlákně je záležitostí tzv. primární struktury. Stáčení vlákna dodvoušroubovice se označuje jako sekundární struktura DNA. Konečně pod tzv. terciární strukturou se rozumí obvyklenadšroubovicové vinutí, které usnadňujekondenzaci DNA.

Chemická struktura

[editovat |editovat zdroj]
Související informace naleznete také v článkunukleová kyselina.

DNA vlastně není nic jiného než velmi dlouhý lineární řetězecnukleotidů. Například uvnitř každéhovirionu planých neštovic se nachází DNA o délce 193 mikrometrů, kruhová DNA u Escherichia coli má délku 1 600 µm (1,6 mm),lidský genom je rozložen do 23 lineárních molekul DNA (v haploidním stavu) o celkové délce 1 metru.[13] Nukleotid je základní stavební jednotkou všech molekul DNA; existují přitom čtyři základní typy nukleotidů, jež se v DNA přirozeně vyskytují. Tyto čtyři nukleotidy (dATP,dGTP,dCTP,dTTP) se navzájem liší typem přivěšenénukleové báze, jíž může být především adenin, guanin, cytosin či thymin.[pozn. 1] Důležité je, že každý nukleotid má tři důležité stavební součásti:

  • deoxyribóza – pětiuhlíkovýcukr (pentóza), který se v DNA vyskytuje v cyklickéfuranózové formě. Jeho uhlíky se po směru pohybu hodinových ručiček označují 1', 2', 3', 4' a 5', přičemž na 1' uhlíku je navěšena nukleová báze, na 3' a 5' uhlíku jsou přesOH skupinu připevněny fosfátové skupiny;
  • fosfát – vazebný zbytekkyseliny ortofosforečné, který je navázán na 5' uhlíku každého nukleotidu. Záporný náboj na fosforečnanu je důvodem celkového negativního náboje DNA. Fosfátová skupina je můstek propojující 5' uhlík každé deoxyribózy s 3' uhlíkem předchozí deoxyribózy. Výsledkem je tzv. cukr-fosfátová kostra DNA.
  • nukleová bázedusíkatáheterocyklická sloučenina. V DNA se v různých kombinacích vyskytují především čtyři základní nukleové báze, dvěpurinové (adeninA aguaninG) a dvěpyrimidinové (thyminT acytosinC). Jedna z těchto čtyř nukleových bází je připojena na 1' uhlíku deoxyribózy pomocíN-glykosidové vazby. Právě existence čtyř nukleových bází je zásadní proinformační vlastnosti DNA. Důležitá je také schopnost nukleových bází vytvářet celou řaduvodíkových můstků.

Primární struktura DNA se dá znázornit jako lineární řada nukleotidů nebo třeba jako řada písmen, které odpovídají dusíkatým bázím v těchto nukleotidech. Dále je důležité, že DNA je směrovaná (direkcionalizovaná), tzn. dají se jednoznačně odlišit oba konce. Směr vláken se označuje právě podle orientace deoxyribózy v něm, tedy: směr 3'→5' a opačný směr 5'→3'. Podle konvence se pořadí nukleotidů zapisuje směrem 5'→3' (např.TACGGACGGG AGAAGCGCGC GGGCGGGCCG je prvních 30 z 3 675 nukleotidů tvořícíchpřepisovanou částgenu pro lidský alfa-tubulin[15]).

V roce 2011 se objevila zpráva o existenci bakteriíGFAJ-1, která údajně ve své DNA obsahuje místo fosfátových skupinarseničnany.[16] Hypotéza byla definitivně vyvrácena v r. 2012.[17][18][19]

Uspořádání řetězců

[editovat |editovat zdroj]
Bázový pár
Bázový pár
Související informace naleznete také v článkupárování bází.

Deoxyribonukleová kyselina (DNA) může existovat jako samostatná jednovláknová molekula (tzv.ssDNA), nicméně velmi často vytváří vícevláknové struktury, které jsou složené z několika řetězců spojených vodíkovými můstky. Vodíkové můstky jsou jedním z typů poměrněslabých vazebných interakcí, mezi dvěma či více vlákny DNA jich však může vzniknout obrovské množství; výsledná vícevláknová struktura tak je poměrně stabilní. Typickou formou takového vícevláknového uspořádání DNA jedvoušroubovice, notoricky známá molekula DNA (připomínající „stočený žebřík“) tvořená dvěma lineárními řetězci. Aby vznikla pravidelná struktura s velkým množstvím vodíkových můstků, je žádoucí, aby se vedle sebe „v příčli žebříku“ vyskytovaly vždy určité nukleové báze, které spolu ve správném prostorovém uspořádání vytváří několik vodíkových můstků. V typickém případě (ne však vždy) se nukleové báze spojují navzájem s odpovídající bází podle jednoduchého klíče:

  • A se páruje s T (vzájemně jsou spojeny dvěma vodíkovými vazbami)
  • G se páruje s C (vzájemně jsou spojeny třemi vodíkovými vazbami)

Jedná se o komplementaritu bází, z ní vychází vzájemná komplementarita obou vláken DNA. Vždy je na určité pozici v molekule jeden nukleotid z dvojice a v protějším vlákně druhý z nich. Takto se uchovává v každém z vláken tatáž informace, i když jedno z vláken je „negativem“ vlákna druhého – podle jednoho vlákna je možné přiřazením komplementárních bází vytvořit vlákno druhé. PoměrAT aGC párů v molekule DNA je velmi různý: tzv.obsahGC se pohybuje u bakterií od 25 do 75 %, u savců v rozmezí 39–46 %.[20]

Existuje celá řada dalších možností, jak pomocí vodíkových můstků spárovat báze, neboť atomů schopných podílet se na vzniku vodíkových vazeb je na molekulách purinů i pyrimidinů celá řada. Samostatnou kapitolou je tzv.hoogsteenovské párování pojmenované podleKarsta Hoogsteena, který je v 60. letech 20. století jako první popsal.[21] Jinou možností je tzv.wobble párování, které umožňuje úsporné rozeznávání kodonů pomocítRNA molekul. Při wobble párování může například guanin vytvářet vazbu s uracilem; někdy je rekrutováninosin, jenž má velmi obecné vazebné schopnosti a je schopen vázat se naC,A aU.[22]

Kromě vodíkových můstků se uplatňujehydrofobie.[23]

Dvoušroubovice

[editovat |editovat zdroj]
Animace otáčejícího se prostorového modeludvoušroubovice B-DNA
Podrobnější informace naleznete v článkudvoušroubovice.

V drtivém procentu případů se DNA za běžných podmínek uchovává ve formě pravotočivé dvoušroubovice. Dvoušroubovice DNA je tvořena dvěma vlákny DNA, které se obtáčí kolem společné osy a interagují spolu. Vlákna jsou tzv.antiparalelní, tzn. směřují opačnými směry[24] – zatímco jedno vlákno můžeme jedním směrem popsat jako5'-3', druhé je ve stejném směru3'-5'. Čísla3' a5' označují čísla uhlíku nadeoxyribóze, na které se upínajífosfátové skupiny v cukr-fosfátové kostře DNA. Mezi bázemi v rámci jednoho „patra“ dvoušroubovice platí pravidlaWatson-Crickovské komplementarity.

Existuje několik tzv. helikálních forem (konformací) DNA, které se liší celou řadou parametrů. Typická Watson-Crickovská pravotočivá dvoušroubovice (tzv.B-DNA) je nicméně zcela převažující a ostatní formy (zejména pravotočiváA-DNA a levotočiváZ-DNA) se sice mohou vyskytovat i v podmínkách živé buňky, nicméně spíše vzácně a jen za specifických okolností.[25][26][27]

Jiná uspořádání řetězců

[editovat |editovat zdroj]
G-kvartet je jednou ze známých alternativních struktur DNA, jež se vyskytují v buňkách

V obecném povědomí DNA tvoří dvoušroubovici, nicméně existují i jiné způsoby uspořádání. Některé se vyskytují i v buňkách (in vivo), jiné jsou spíše laboratorní záležitost. Mnohdy se využívá neobvyklýchpárovacích míst na molekuláchbází. To je případ tzv.G-kvartetů, čtyřvláknových úseků DNA v telomerických oblastechchromozomů, v nichž do kruhu párují čtyřiguaninové báze.[28] Co se týčetrojšroubovice DNA,[29][30] možná dočasně vzniká při tzv.crossing-overu;[31] laboratorně může být trojvláknová struktura připravena např. z vláken poly(A) a polydeoxy(U).[32]

DNA se také může větvit a vznikají např. třívláknová či čtyřvláknová spojení. V některých případech dvoušroubovicová DNA na jednom svém konci lokálně denaturuje a na uvolněné konce se připojí třetí řetězec – v prostředí buňky by tato struktura mohla vznikat při crossing-overu, pokud nedošlo k replikaci v jednom z genomů.[33] Jindy takto vlastně denaturují dvě dvoušroubovice a vzájemně se komplementárně přiloží, čímž vzniká čtyřvláknové spojení. V případě crossing-overu se jedná o známýHollidayův spoj, který umožňuje vlastní výměnu homologních vláken.[34] Při replikaci DNA či při opravě DNA mohou větvení vznikat také. V laboratoři nicméně vznikají ještě mnohem fantastičtější prostorové struktury DNA – byly vyrobeny např.krychle čiosmistěn složené celé pouze z DNA molekul. Tyto a další syntetické struktury DNA jsou v centru zájmuDNA nanotechnologů.[1]

Nekanonická (odlišná odB-DNA šroubovice) uspořádání DNA, od ohybů, „vlásenek“ na jednom vlákně,A-DNA aZ-DNA dvoušroubovic až poG-kvartety se vyskytytují i jako lokální sekvenční motivy v převážně kanonicky uspořádaném genomu, častěji v centromerách a krátkých ramenech chromozomů, a plní specifické regulační funkce, které si vyžadují další zkoumání.[35][36]

Vyšší úrovně struktury

[editovat |editovat zdroj]
Související informace naleznete také v článkukondenzace DNA.

Genom, tedy souhrn DNA v buňce, není pouhou změtí dvoušroubovicové DNA – na vyšších úrovních je možné pozorovat komplikované vinutí a četné interakce s buněčnými bílkovinami. Tyto struktury také nesou genetickou informaci.[37] Zcela typické je tzv.nadšroubovicové vinutí (supercoiling), tedy dodatečné šroubovicové vinutí již existující dvoušroubovice.[38] Nadšroubovicové vinutí se dá zjednodušeně představit tak, že držíme v každé ruce jeden z obou konců provázku a postupně na jednom konci provázek kroutíme. Vzniklé napětí se opět uvolní (relaxuje) jen tehdy, pokud uvolníme jednu ruku. Dvoušroubovice je však stočená již ve svém relaxovaném stavu (jedna otáčka každých cca 10 párů bází), a tak můžeme rozlišit, zda se nadšroubovice vine stejným směrem, jako dvoušroubovice (tzv. pozitivní supercoiling), nebo směrem opačným (negativní supercoiling, uvolňuje DNA). Nadšroubovicové vinutí má celou řadu důležitých funkcí a regulačních rolí;[39] v žádném případě se nejedná pouze o anomálii ve struktuře.

DNA se v buňce dále organizuje do mikroskopicky pozorovatelných útvarů známých jakochromozomy. U bakterií je zřejmě systém kondenzace DNA do (obvykle jediného) chromozomu poněkud méně propracovaný a např. u Escherichia coli zahrnuje několik proteinů, které jsou schopné udržovat nadšroubovicové vinutí a vytvářet ostré ohyby vlákna DNA.[40]Eukaryotické organismy, jako je třeba člověk, mají velmi komplikovaně sbalenou DNA. Souvisí to s délkou jejich DNA – např.lidský genom má na délku dva metry, přitombuněčné jádro má na délku několik mikrometrů. Dvouvlákno DNA se nejprve nabaluje na bazické proteiny známé jakohistony; DNA nabalená na osm histonů vytváří tzv. „nukleozom“, a tak na této úrovni DNA vypadá jako řada korálků (nukleozomů) na provázku (DNA). Tyto korálky se však obvykle ještě stáčí do 30 nanometrů tlusté šroubovice.[41] Na vzniku chromozomů se podílí ještě vyšší úrovně sbalení DNA, které jsou však méně prostudované a vznikají jen v určitých fázíchbuněčného cyklu.

Strukturachromatinu ujaderných organismů: v buňce se DNA shlukuje do komplikovanýchkondenzovaných útvarů, přičemž k nejvyšší kondenzaci dochází běhembuněčného dělení

Vlastnosti

[editovat |editovat zdroj]
Vzestupabsorbance jako měřítko denaturačního procesu nukleových kyselin (viz text)

DNA jepolymerní sloučeninou s vysokoumolární hmotností. Molární hmotnost závisí na délce DNA a zhruba platí, že s každým nukleotidem stoupá molární hmotnost o 330 g/mol, v případě dvouvláknové DNA na jeden pár bází připadá asi 650 g/mol.[42] Deoxyribonukleová kyselina je záporněnabitá (díkyfosforečnanovým skupinám), a je tedypolárního charakteru. Díky tomu jerozpustná ve vodě, naopak v ethanolu se sráží (neboť dochází k vyvázání záporných nábojů).[43] Po vysrážení má DNA bílou barvu.[44] Izolovaná DNA zaujímádvoušroubovicové uspořádání, to je však možné rozrušit v procesudenaturace. Typicky se denaturace provádí zvýšením teploty, ale denaturaci způsobuje i nízkáiontová síla roztoku nebo silně zásadité prostředí. Naopak kyselé prostředí není vhodné, protože dochází k hydrolýzeglykosidových vazeb mezi cukrem a bází.[45] DNAabsorbuje v UV oblasti s absorpčním maximem přivlnové délce 260 nm. Při denaturaci DNA seabsorbance v této oblasti zvyšuje – tomuto jevu se říkáhyperchromní efekt.[46] Je to dáno tím, že na absorpci se v největší míře podílejí báze DNA, které jsou v dsDNA „schované“ uvnitř dvoušroubovice. Po denaturaci dochází k „obnažení“ bází, které tak mohou lépe absorbovat UV záření.

Poločas rozpadu DNA činí dle studia kosterních nálezů asi 521 let.[47] DNA je považována za stabilní molekulu, což vynikne zejména při srovnání s RNA jakožto druhou významnounukleovou kyselinou. V molekule DNA není na 2' uhlíku OH skupina – u RNA tam tato reaktivní skupina je a způsobuje nižší stabilitu RNA.[48] DNA se v laboratoři dlouhodobě skladuje při −20° nebo −70 °C, kde vydrží i několik let. Při teplotě 4 °C v TE pufru vydrží několik týdnů.[49] Existuje mnoho různých metod k uchování DNA na delší čas (zmrazení vzorků tekutým dusíkem, FTA karty, plastové mikrozkumavky, uchování pomocí chitosanu[50]). Uvnitř těl živých organismů však DNA musí snášet i poměrně vysoké teploty, a přesto vydrží. Krajním případem jsouhypertermofilní organismy, které žijí i při teplotách kolem 100 °C. Jejich DNA čelí jak riziku denaturace, tak i termodegradaci (rozpadupevných chemických vazeb). Přesto žijí a mimoopravných mechanismů k tomu zřejmě přispívá i nadšroubovicové vinutí a také optimálníiontové složenícytoplazmy.[51]

Pro DNA jsou však dále typické i některé vlastnosti, které ji do jisté míry odlišují od běžných chemických látek. V buňce je například možnéreplikovat DNA, tedy vytvářet její kopie. Víceméně každé buněčné dělení vyžaduje zmnožení genetické informace, aby jí v každé buňce bylo stále konstantní množství. V průběhu procesu se oddělí řetězce mateřské DNA a oba slouží jako návod (tzv. „templát“) pro tvorbu druhých vláken v rámci obou nově vznikajících dvoušroubovic. Ty jsou následně napůl tvořeny původní DNA a napůl nově dosyntetizované – celý proces jesemikonzervativní. K dalším zajímavým vlastnostem DNA v buňkách patří možnostopravovat DNA, což ještě dále vylepšuje (už tak poměrně precizní) přenos genetické informace.[52] Bylo by možno najít množství dalších pozoruhodných vlastností DNA, vesměs probíhajících v buňce za pomoci speciálníchenzymů.

Funkce

[editovat |editovat zdroj]
Příklad sekvence DNA: dole jsou uvedena písmena reprezentující jednotlivé nukleotidy v lineárním řetězci DNA, tak jak jsou čteny přisekvenování (graf výše vzniká snímáním fluorescenčních značek při určitých typech sekvenování)
Související informace naleznete také v článcíchgenom,sekvence DNAagenetický kód.

DNA je nositelkougenetické informace všech živýchorganismů v pravém slova smyslu, ale i mnohavirů. V DNA je zapsána sekvence všechbílkovin a přeneseně je genetickou informací podmíněna existence všechbiomolekul abuněčných struktur (k jejichž tvorbě jsou potřeba bílkoviny).[53] Schopnost ukládat a přenášet genetickou informaci je jednou z fundamentálních vlastnostíživota.[53] Bez DNA buňky vydrží žít jen omezenou dobu; například lidskéčervené krvinky při svém zrání vyvrhujíjádro, a protože pak nejsou schopné vyrábět nové bílkoviny a udržovat buňku, jsou po několika měsících poškozeny a musí se z oběhu odstraňovat.[54] Některé viry jsou sice schopné uchovávat svůj genetický materiál v podoběRNA (tzv.RNA viry), jenže RNA genomy nepodléhají opravným mechanismům a rychle mutují, a proto mají limitovanou velikost.[55] Život, tak jak ho známe, je proto závislý na DNA.

Konkrétní uložení DNA v buňce závisí na příslušnosti organismu k jedné z dvou základních skupin organismů.Bakterie aarchea (souhrnně „prokaryota“) mají DNA obvykle uloženu volně v cytoplazmě. Obvykle vzniká pouze jistá jaderná oblast, tzv.nukleoid. Mimo to řada bakterií vlastní i malé kruhové molekuly DNA, tzv.plazmidy, které umožňují mimo jinéhorizontální výměnu genetické informace. Zbylé organismy, tedy např. člověk, ale i rostliny, živočichové či prvoci, mají DNA uloženu především v buněčném jádře. Dále však se DNA nachází v některých eukaryotickýchorganelách, jmenovitě v mitochondriích a v plastidech, pokud je buňka vlastní (jev zvanýmimojaderná dědičnost).

Informace nesená sekvencí nukleotidů v DNA se označuje jako genetická informace. Na každé nukleotidové pozici se nachází jedna ze čtyř bází (A,C,G čiT), což znamená, že sekvence o délcen může nabývat 4n stavů.[56] Pro DNA dlouhou pouhých 10 nukleotidů existuje tedy teoreticky 410 = 1 048 576 kombinací.Lidský genom (souhrn lidské jaderné DNA) přitom obsahuje 3,1 miliardy (párů) bází.[57] Nejvyšší informační hodnota se přitom v genomu objevuje v místech, kde sídlí tzv.geny, která zaznamenávají informaci pro tvorbuRNA a potažmo i všech bílkovin. Informace pro tvorbu bílkovin je zašifrována pomocí třípísmenného kódu známého jakogenetický kód. Každé trojici bází v DNA totiž u protein-kódujících genů odpovídá určitáaminokyselina. Aminokyseliny jsou základní stavební kameny bílkovin, takže je vlastně genetická informace jakýmsi návodem na výrobu bílkovin. Genetická informace je uplatňována podle tzv.centrálního dogmatu molekulární biologie. DNA je nejprve přepisována v RNA (obvykle tzv.messenger RNA), načež je tato RNA použita jako vzor pro tvorbu bílkovin. První zmíněný krok se jmenujetranskripce, druhýtranslace.

Velká část genomu mnoha organismů však není součástí žádného genu a dokonce se ani nepřepisuje v RNA. Role této tzv.nekódující DNA je v mnoha případech neznámá; někdy však pomáhá regulovatspouštění a vypínání okolních genů.[58] Velká část nekódující DNA dle současné úrovně znalostí nemá žádnou konkrétní funkci a označuje se prostě jakojunk (odpadní) DNA.[59] Část této odpadní DNA však podle výsledků projektuENCODE ve skutečnosti kóduje různé krátkéregulační RNA; celkem se odhaduje, že 10–20 % genomu má díky těmto RNA významnou regulační funkci. V těsném okolí těchto regulačních sekvencí se tak podle ENCODE celkem nachází až 95 % lidského genomu.[60][61]

Práce s DNA

[editovat |editovat zdroj]

Izolace a separace

[editovat |editovat zdroj]
Agarózový gel po proběhlé DNAelektroforéze: podUV lampou jsou patrné fluoreskující DNA „bandy“

V celé řadě případů je žádoucí izolovat z buněk či z virových partikulí jejich DNA. Existuje samozřejmě celá řada metodextrakce DNA, nicméně u všech je nutné získat dostatečné množství biologického materiálu, uvolnit DNA a oddělit ji z nadmolekulárních struktur, načež je nutné vzorek přečistit a případně zahustit.[62] Důležitým krokem je uvolnění DNA z buněk, které se u živočišných buněk provádí pomocídetergentů (povrchově aktivních čisticích látek), jež rozrušují membrány. U buněk s buněčnou stěnou je to komplikovanější a je nutné nasadit třebalysozymy (na bakteriální buněčnou stěnu) či mechanickou degradaci. Co se týče přečišťování buněčných extraktů, obvykle je nutné se zbavitbílkovin, které představují hlavní kontaminaci vzorků. Je možné použít proteázy, ale mnohdy se proteiny srážífenolem achloroformem, zatímco nukleové kyseliny zůstanou v roztoku a je možné je pak vysrážet třebaethanolem.[63]

Po izolaci DNA následuje často separace (oddělení) požadovaných druhů molekul. Může být žádoucí oddělení třebaplazmidů od genomové DNA bakterií, což se dělá poměrně jednodušecentrifugací při vhodně nastavených parametrech, obvykle pomocí denaturace a následné renaturace.[63] Pro jemnější rozdělování podle velikosti i podle topologie DNA se často používáelektroforéza naagarózovém (či v případě velmi malých molekul napolyakrylamidovém) gelu. V případě extrémně velkých fragmentů DNA se užívá tzv.pulzní gelová elektroforéza. Z gelu je možné následně DNA převést nanitrocelulózovou membránu pomocí tzv.Southernova přenosu. Další metodou dělení DNA jecentrifugace v hustotním gradientu, obvykle v gradientuchloridu cesného – tato metoda odděluje zejména fragmenty, jež se liší zastoupením bází (obsahemGC).[64]

DAPI, jedna z chemikálií používaných k barvení DNA, se vmezeřuje domalého žlábku a specificky tak označuje buněčnou DNA; na obrázku je DAPI fialově

Byl vyvinut nespočet způsobů, jak obarvit DNA – a to jak přímo v buňce, tak i DNA izolovanou v laboratorním skle. Používají se často v laboratořích ve chvíli, kdy je nutné např. v elektroforetickém gelu či přímo ve fixované buňce zvýraznit DNA. Ke známým takovým barvivům patří (bez logické následnosti):SYBR Green,YOYO-1,TOTO-1,TO-PRO,SYTOX Green, ale i klasickýethidiumbromid apropidiumjodid,akridinová oranž, různáHoechst barviva či třebaDAPI.[65] K velmi specifickým barvícím metodám patřífluorescenční in situ hybridizace (FISH), která umožňuje navázání fluorescenčních sond na konkrétní sekvenci DNA.[66]

Sekvenování a umělá syntéza

[editovat |editovat zdroj]
Polymerázová řetězová reakce vyžaduje pro správný průběh směs enzymů, substrátů a dalších látek. Obvykle se provádí vEppendorfových zkumavkách (na obrázku každá z nich obsahuje 100mikrolitrovou reakci)

Sekvenování DNA je souhrnný termín pro biochemické metody, jimiž se zjišťuje pořadínukleových bází v sekvencích DNA.[67] Právě pořadí bází je princip zakódování genetické informace, a proto je v centru zájmu biologů. Původní a po dlouhá léta převažující metodou bylo tzv.Sangerovo sekvenování, které využívá speciálně chemicky upravených nukleotidů, jež jsou pomocí DNA polymerázy zařazovány s určitou pravděpodobností do prodlužující se DNA – tím blokují další polymeraci a výsledný produkt je možné detekovat pomocíelektroforézy. V souvislosti se snahou zrychlit a zlevnit sekvenovací proces byla vyvinuta celá řadasekvenačních metod nové generace. K těm patří např.pyrosekvenování a příbuzné metody. Studie Zhang et al. 2011 uvádí pět moderních metod, jež jsou komerčně dostupné: Roche GS-FLX 454 („454 sekvenování“), Illumina („Solexa“), ABI SOLiD, Polonator G.007 a Helicos HeliScope.[68]

Existuje i celá řada postupů, jak si připravit či namnožit konkrétní molekulu DNA. Jednou z možností jechemická syntéza DNA, při níž dochází k sestavování krátkýcholigonukleotidů, a to postupným řazením nukleotidů za sebou. V typickém případě však již je určité množství DNA k dispozici a je žádoucí ho pouze zmnožit tak, aby všechny kopie měly pokud možno totožnou sekvenci. To se často dělá buď pomocíklonování DNA nebo metodoupolymerázové řetězové reakce.[69]

Význam ve společnosti

[editovat |editovat zdroj]

Lékařská diagnostika

[editovat |editovat zdroj]

Vědecký pokrok v oblasti genetiky způsobil boom v mnoha oblastech lékařskédiagnostiky. Například v bakteriologii,virologii aparazitologii se uplatnily metody, jež umožňují v napadené tkáni detekovat DNA pocházející z mikroorganismů, jež tuto tkáň napadly. To se dělá buď pomocí různýchDNA prób schopných se specificky vázat na určitou sekvenci typickou pro daného parazita, nebo např. cestou namnožení DNA pomocípolymerázové řetězové reakce a následnýmsekvenováním – tím je možné získat sekvenci DNA patogenních organismů, jíž mikrobiologové srovnají s databázemi patogenních kmenů. Tyto pokročilé molekulární metody se uplatňují např. při identifikaci těžkokultivovatelnýchbakterií či při určování celé řadyvirových čiparazitárních onemocnění.[70]

Součástí diagnostické práce je však i studiumlidské DNA – uplatňuje se například v rakovinné terapii[71] či při diagnostice některýchgenetických onemocnění. Své místo již molekulární metody našly v prenatální diagnostice chorob, např.ze vzorku plodové vody.[72] Další testy se rutinně provádí z kapkykrvenovorozenců. Testy DNA v rámcigenetického poradenství však dnes mohou pomoci i párům, jež teprve dítě plánují. Je to vhodné tehdy, vyskytuje-li se v rodinné historii nějaké genetické onemocnění. Dnes jsou genetické testy dostupné všem zájemcům a je možné o sobě zjistit celou řadu informací od těch zřejmých (barva očí) přes různé zajímavosti (atletické vlohy) až po vážné údaje (náchylnost k rakovině atp.).[73]

Genetická daktyloskopie

[editovat |editovat zdroj]
Rozdíly mezi 6 jedinci prokázané analýzou jednoho zVNTR markerů
Podrobnější informace naleznete v článkugenetická daktyloskopie.

Některé oblasti např. lidské jaderné DNA jsou velmi proměnlivé a člověk od člověka se v nich téměř vždy liší. Z tohoto důvodu je DNA v kriminalistice a v forenzních vědách neocenitelným zdrojem informací.Repetitivní sekvence známé jakoVNTR čiSTR patří mezi ty nejčastěji studované. Studium VNTR repetic vyžaduje relativně velké množství DNA, a proto se využívá zejména tehdy, máme-li k dispozici vzorek krve (např. u testů otcovství). Obvykle se testují metodouRFLP (jenž zkoumá polymorfismus délkyrestrikčních fragmentů). V kriminalistice našly větší využití tzv.STR (čili ~mikrosatelity). Pravděpodobnost, že dvě osoby budou mít jednu STR oblast shodnou, je pro danou variantu např. 1 : 83, což by nebylo příliš přesvědčivé, a proto se používá obvykle 13markerů, které se vyhodnocují zvlášť a vzájemný pozitivní výsledek důvěryhodnost testu mnohonásobně zvyšuje. První použití DNA v kriminalistice se datuje do roku1986 a došlo k němu v rámci soudního řízení v Anglii. Testování STR oblastí se však dnes prosazuje i v určování otcovství.[74]

Genetická manipulace

[editovat |editovat zdroj]
Podrobnější informace naleznete v článcíchgenetické inženýrstvíageneticky modifikovaný organismus.

V současnosti je lidstvo schopnéprovádět cílené změny v genetické informaci (v pořadí nukleotidů v DNA) a ovlivňovat tím některé vlastnosti organismů. Tyto tzv. genetické modifikace způsobily revoluci v celé řaděbiotechnologických odvětví a umožňují např. průmyslovou produkcihormonů,srážecích faktorů prohemofiliky,enzymů užívaných v potravinářství a některýchvakcín. Výsledkem genetického inženýrství jsou i různé transgenní plodiny, např. ty odolné k herbicidům.[75] V Evropské unii je z geneticky modifikovaných plodin povolena pouzeBt kukuřice,[76] která nese gencry pocházející z půdní bakterieBacillus thuringiensis. Tento gen způsobuje, že je rostlina pro své hmyzí škůdce jedovatá.[77]

Biologická systematika

[editovat |editovat zdroj]
Podrobnější informace naleznete v článcíchbiologická systematikaafylogenetika.

V neposlední řadě se studium sekvencí DNA uplatňuje v třídění organismů podle jejich příbuznosti, tedy v oboru biologie známém jakofylogenetika. Jedním z prvních krůčků v tomto oboru byla v 60. letech studie, která srovnávala sekvenci genu procytochrom c u různých organismů: výsledky jsou v podstatě intuitivní, zatímcošimpanz má sekvenci tohoto genu s člověkem zcela shodnou amakak rhesus se liší pouze jedinou nukleotidovou záměnou,psí gen pro cytochrom už se od lidského genu liší na 13 místech akvasinkový gen dokonce na 56 pozicích. Na základě těchto informací si lze udělat obrázek o příbuzenských vztazích mezi organismy. V souvislosti s rozmachemsekvenování je dnes k dispozici obrovské množství sekvencí DNA celé řady organismů a k jejich analýze se používají různé sofistikované nástroje, jako napříkladmetoda parsimonie nebometoda maximální pravděpodobnosti. Dnes je možno i odhadnout čas, který dělí v evoluční historii libovolné dva druhy – metoda k tomu užívaná opět pracuje se sekvencemi DNA a označuje se jakomolekulární hodiny. Pomocí fylogenetických přístupů je možno odpovídat na celou řadu dalších otázek, namátkou „jaký vztah majíneandertálci k dnešním lidem“, „jak se mezi jednotlivými nemocnými šířívirus HIV“ a podobně.[78]

Pravěká DNA

[editovat |editovat zdroj]

Od 50. a 60. let 20. století se objevují studie o údajném izolování sekvencí DNA pravěkých organismů.[79] V 80. a 90. letech přinesl tomuto oboru („paleogenetika“) slávuCrichtonův román a jehoSpielbergova filmová adaptaceJurský park (1993), ve kterém byli naklonováni druhohorní (nejen ti z jury)dinosauři. Dinosauří proteiny a měkké tkáně byly skutečně získány např.Mary H. Schweitzerovou a jejím týmem[80], pravěká DNA dinosaurů ale nejspíš nikdy získána nebude.[81][82][83] Nepotvrdily se ani domněnky o získání DNA ze 120–135 milionů let staréholibanonskéhojantaru entomologemGeorgem Poinarem v roce1993.[83][84][85] Lze ovšem získat DNA starou více než 1 milión let.[86]

Některé paleontologické objevy nicméně naznačují, že alespoň stopy po původní DNA mohou být v dinosauřích fosiliích z období druhohor skutečně objeveny.[80][87][88]

U malého opeřeného dinosaura roduCaudipteryx, žijícího na území Číny před 125 miliony let (období rané křídy), byla v roce2021 identifikována fosilie původní buněčné struktury, která by mohla býtchromatinem (obsahovat jakési pozůstatky komplexu DNA a bílkovin).[89] Ve stejné době byly zkoumány původní stopy po molekule DNA také v lebeční chrupavce mláděte kachnozobého dinosaura druhuHypacrosaurus stebingeri o stáří 75 milionů let.[90]

Odkazy

[editovat |editovat zdroj]
  1. Ve skutečnosti se jich v DNA přirozeně vyskytuje 8, neboť kvůli zamezenígenové exprese jsou některé cytosinové bázemethylovány a cytosin je nahrazen5-methylcytosinem či5-hydroxymethylcytosinem, naopak při demethylaci vznikají ještě5-formylcytosin a5-karboxylcytosin.[14] Methylace bází je jedním z klíčovýchepigenetických mechanismů.

V tomto článku byl použitpřeklad textu z článkuDNA na anglické Wikipedii.

  1. 12SEEMAN, N. C. DNA nanotechnology: novel DNA constructions.Annu Rev Biophys Biomol Struct. 1998, roč. 27, s. 225–48.Dostupné v archivu pořízeném dne 2011-01-10.ISSN1056-8700. (anglicky) 
  2. Dahm R. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research.Hum. Genet. January 2008, roč. 122, čís. 6, s. 565–81.doi:10.1007/s00439-007-0433-0.PMID17901982. (anglicky) 
  3. Levene, P. The structure of yeast nucleic acid.J Biol Chem. 1. prosinec 1919, roč. 40, čís. 2, s. 415–24.Dostupné v archivu pořízeném dne 2009-06-29. (anglicky) Archivováno 29. 6. 2009 naWayback Machine.
  4. Avery O., MacLeod C., McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III.J Exp Med. 1944, roč. 79, čís. 2, s. 137–158.Dostupné online.doi:10.1084/jem.79.2.137.PMID19871359. (anglicky) 
  5. Watson J.D. and Crick F.H.C. A Structure for Deoxyribose Nucleic Acid.Nature. 1953, roč. 171, čís. 4356, s. 737–738.Dostupné online [PDF].doi:10.1038/171737a0.PMID13054692. (anglicky) 
  6. Wilkins, M.H.F; A.R. Stokes; Wilson, H.R. Molecular Structure of Deoxypentose Nucleic Acids.Nature. 1953, roč. 171, čís. 4356, s. 738–740.Dostupné online [PDF].doi:10.1038/171738a0.PMID13054693. (anglicky) 
  7. Crick, F.H.C.On degenerate templates and the adaptor hypothesis (PDF).Archivováno 1. 10. 2008 naWayback Machine. genome.wellcome.ac.uk (Lecture, 1955). Accessed 22 December 2006
  8. CAMMACK, R., et al.Oxford dictionary of biochemistry and molecular biology; revised edition. New York: Oxford University Press, 2006.ISBN 0-19-852917-1. S. 415. (anglicky) 
  9. The Nobel Prize in Physiology or Medicine 1968 Nobelprize.org Accessed 22 December 06
  10. FLEGR, Jaroslav.Evoluční biologie. 2., rozšířené vyd. Praha: Academia, 2009.ISBN 978-80-200-1767-3. Kapitola Kulturní evoluce, s. 320–329. 
  11. VREELAND, R. H; ROSENZWEIG, W. D; POWERS, D. W. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal.Nature. 19. říjen 2000, roč. 407, čís. 6806, s. 897–900.Dostupné online.ISSN0028-0836. (anglicky) 
  12. FISH, S. A; SHEPHERD, T. J; MCGENITY, T. J, et al. Recovery of 16S ribosomal RNA gene fragments from ancient halite.Nature. 2002, roč. 417, čís. 6887, s. 432–6.Dostupné online.ISSN0028-0836. (anglicky) 
  13. VOET, Donald; VOET, Judith.Biochemistry. 4. vyd. [s.l.]: Wiley, 2010.Dostupné online.ISBN 978-0470-57095-1. S. 94. (anglicky) 
  14. Scientists identify seventh and eighth bases of DNA,PhysOrg podleScience, 21. 7. 2011(anglicky)
  15. HUSSIEN ABOU-DEIF, M. Characterization of new genes coding for alpha-tubulin in maize.molbiol-tools.ca [online]. [cit. 2024-09-24]. Zea mays tua5 gene for alpha tubulin, exons 1-5..Dostupné online. (anglicky) 
  16. WOLFE-SIMON, F; SWITZER BLUM, J; KULP, T. R, et al. A bacterium that can grow by using arsenic instead of phosphorus.Science. 2011, roč. 332, čís. 6034, s. 1163–6.Dostupné online.ISSN1095-9203. (anglicky) 
  17. REAVES, Marshall Louis; SINHA, Sunita; RABINOWITZ, Joshua D, KRUGLYAK Leonid, REDFIELD Rosemary J. Absence of Detectable Arsenate in DNA from Arsenate-Grown GFAJ-1 Cells.Science [online]. 8. červenec 2012. Online před tiskem.Dostupné online.ISSN1095-9203.doi:10.1126/science.1219861. (anglicky) 
  18. ERB, Tobias J; KIEFER, Patrick; HATTENDORF, Bodo, GÜNTHER Detlef, VORHOLT Julia A. GFAJ-1 Is an Arsenate-Resistant, Phosphate-Dependent Organism.Science [online]. 8. červenec 2012. Online před tiskem.Dostupné online.ISSN1095-9203.doi:10.1126/science.1218455. (anglicky) 
  19. SHERIDAN, Kerry:Scientists say NASA's 'new arsenic form of life' was untrue (popularizační článek k předchozím 2 referencím).PhysOrg, 9. červenec 2012(anglicky)
  20. Voet & Voet, s. 84–85
  21. NELSON, David L; COX, Michael M.Lehninger Principles of Biochemistry. 5. vyd. New York: W. H. Freeman and Company, 2008.Dostupné online.ISBN 978-0-7167-7108-1. S. 282. (anglicky) 
  22. LODISH, Harvey, et al.Molecular Cell Biology. New York: W.H. Freedman and Company, 2004.Dostupné online.ISBN 0-7167-4366-3. S. 123. (anglicky) 
  23. HOUSER, Pavel. DNA drží při sobě spíše hydrofobní interakce než vodíkové můstky.sciencemag.cz [online]. 2020-01-02 [cit. 2021-05-08].Dostupné online. 
  24. Cammack, s. 47
  25. DUKE, Tom, et al.Multiple aspects of DNA and RNA: from Biophysics to Bioinformatics. Příprava vydání Didier Chatenay, et al. [s.l.]: Elsevier, 2005.ISBN 0-444-52081-3. (anglicky) 
  26. VARGASON, J. M; HENDERSON, K; HO, P. S. A crystallographic map of the transition from B-DNA to A-DNA.Proc Natl Acad Sci U S A. 2001, roč. 98, čís. 13, s. 7265–70.Dostupné online.ISSN0027-8424. (anglicky) 
  27. HA, S. C; LOWENHAUPT, K; RICH, A, et al. Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases.Nature. 2005, roč. 437, čís. 7062, s. 1183–6.Dostupné online.ISSN1476-4687. (anglicky) 
  28. Voet & Voet, s. 1212
  29. ARCELLA, Annalisa; PORTELLA, Guillem; LUZ RUIZ, Maria, et al. Structure of Triplex DNA in the Gas Phase.Journal of the American Chemical Society. 2012, roč. 134, čís. 15, s. 6596–6606.Dostupné online.doi:10.1021/ja209786t. (anglicky) 
  30. First description of a triple DNA helix in a vacuum (popularizační článek k předchozí referenci).PhysOrg, 18. dubna 2012(anglicky)
  31. Cammack, s. 679
  32. Lodish, s. 105
  33. GUO, Q; LU, M; CHURCHILL, M. E, et al. Asymmetric structure of a three-arm DNA junction.Biochemistry. 1990, roč. 29, čís. 49, s. 10927–34.ISSN0006-2960. (anglicky) 
  34. COOPER, J. P; HAGERMAN, P. J. Geometry of a branched DNA structure in solution.Proceedings of the National Academy of Sciences of the United States of America. 1989-10, roč. 86, čís. 19, s. 7336–7340.ISSN0027-8424. (anglicky) 
  35. SMEDS, Linnéa; KAMALI, Kaivan; KEJNOVSKÁ, Iva; KEJNOVSKÝ, Eduard; CHIAROMONTE, Francesca; MAKOVA, Kateryna D. Non-canonical DNA in human and other ape telomere-to-telomere genomes.Nucleic Acids Research [online]. Oxford University Press, 2025-04-24 [cit. 2025-04-29]. Roč. 53, čís. 7: gkaf298.Dostupné online.ISSN1362-4962.doi:10.1093/nar/gkaf298.PMID40226919. (anglicky) 
  36. SHOLTIS, Sam. Beyond the double helix: Alternative DNA conformations in ape genomes.Phys.Org [online]. 2025-04-24 [cit. 2025-04-29].Dostupné online. (anglicky) 
  37. ARENDS, Erik. Second layer of information in DNA confirmed.phys.org [online]. 2016-06-08 [cit. 2021-05-08].Dostupné online. (anglicky) 
  38. ALBERTS, B., et al.The Molecular Biology of the Cell. 5. vyd. [s.l.]: Garland Science, 2007.Dostupné online.ISBN 978-0-8153-4105-5. S. 344. (anglicky) 
  39. WITZ, G; STASIAK, A. DNA supercoiling and its role in DNA decatenation and unknotting.Nucleic Acids Res. 2010, roč. 38, čís. 7, s. 2119–33.Dostupné online.ISSN1362-4962. (anglicky) 
  40. GRISWOLD, Ann.Genome Packaging in Prokaryotes: the Circular Chromosome of E. coli [online]. Nature Education, 2008.Dostupné online. (anglicky) 
  41. Alberts, s. 211
  42. Technical Appendix [online]. Epibio - Epicentre® (an Illumina® company), 2011 [cit. 2011-07-15].Dostupné v archivu pořízeném z originálu dne 2012-01-19. (anglicky) 
  43. OSWALD, Nick.The Basics: How Ethanol Precipitation of DNA and RNA Works [online]. Bitesize Bio, 4. prosinec 2007.Dostupné online. (anglicky) 
  44. Onion Genomic DNA Isolation [PDF]. G-Biosciences.Dostupné online. (anglicky) 
  45. MULLIGAN, Martin E.The physical and chemical properties of nucleic acids [online]. 1996–2003 [cit. 2011-07-15].Dostupné v archivu pořízeném dne 2010-05-02. (anglicky) 
  46. VONDREJS, Vladimír; STORCHOVÁ, Zuzana.Genové inženýrství, I. Praha: Karolinum, 1997. S. 22. 
  47. MIHULKA, Stanislav.Jaký je poločas rozkladu DNA? [online]. OSEL.Dostupné online. 
  48. RNA vs DNA [online]. NEWTON - Ask a scientist, 2007 [cit. 2011-08-06].Dostupné v archivu. (anglicky) 
  49. Current Protocols in Molecular Biology. [s.l.]: John Wiley & Sons, Inc., 2002.Dostupné online. (anglicky) 
  50. ŠRUBAŘOVÁ, P; DVOŘÁK, J. VYUŽITÍ CHITOSANU PRO UCHOVÁNÍ DNA A BIOLOGICKÝCH VZORKŮ.mendelu.cz [PDF]. [cit. 2018-08-15].Dostupné online. (anglicky, česky) 
  51. MARGUET, E; FORTERRE, P. DNA stability at temperatures typical for hyperthermophiles.Nucleic Acids Research. 1994-05-11, roč. 22, čís. 9, s. 1681–1686.ISSN0305-1048. (anglicky) 
  52. Alberts, s. 260
  53. 12Nelson & Cox, s. 271
  54. SHERWOOD, Lauralee.Human physiology: from cells to systems. 7. vyd. [s.l.]: Cengage Learning, 2008. 928 s.Dostupné online. S. 395. (anglicky) 
  55. HUNT, Margaret.Virology [online]. 2010. Kapitola „RNA virus replication strategies“.Dostupné v archivu pořízeném z originálu. (anglicky) 
  56. MARATHE, A; CONDON, A. E; CORN, R. M. On combinatorial DNA word design.J Comput Biol. 2001, roč. 8, čís. 3, s. 201–19.Dostupné online.ISSN1066-5277. (anglicky) 
  57. LITTLE, Peter F. R. Structure and function of the human genome.Genome Research. 2005-12, roč. 15, čís. 12, s. 1759–1766.Dostupné online.doi:10.1101/gr.4560905. (anglicky) 
  58. Alberts, s. 253
  59. Alberts, s. 204
  60. JHA, Alok. Breakthrough study overturns theory of 'junk DNA' in genome.The Guardian. 5. září 2012.Dostupné online. (anglicky) 
  61. HAMZELOU, Jessica.Global project reveals just how active our 'junk' DNA is [online]. New Scientist, 6. září 2012 [cit. 2012-09-11].Dostupné v archivu pořízeném dne 2012-09-11. (anglicky) 
  62. Vondrejs & Storchová, s. 17
  63. 12Vondrejs & Storchová, s. 18
  64. Voet & Voet, s. 159
  65. Nucleic Acid Stains—Section 8.1 [online]. InVitrogen life technologies.Dostupné online. (anglicky) 
  66. Cammack, s. 248
  67. RACLAVSKÝ, Vladislav.Úvod do základních metod molekulární genetiky [PDF]. Ústav biologie Lékařské fakulty Univerzity Palackého v Olomouci, červen 1999 [cit. 2018-08-27]. Kapitola 8. Sekvenování DNA, s. 21–24.Dostupné online.ISBN 80-7067-892-5. 
  68. ZHANG, J; CHIODINI, R; BADR, A, et al. The impact of next-generation sequencing on genomics.J Genet Genomics. 2011, roč. 38, čís. 3, s. 95–109.Dostupné online.ISSN1673-8527. (anglicky) 
  69. VONDREJS, Vladimír.Genové inženýrství, II. Praha: Karolinum, 2001. S. 22. 
  70. KAYSER, F. H, et al.Medical Microbiology. [s.l.]: Thieme, 2005.Dostupné online. S. 216. (anglicky) 
  71. BRONCHUD, Miguel H, et al. Totowa, New Jersey: Humana Press, 2000. S. 45. (anglicky) 
  72. SADLER, Thomas W.Langman’s Medical Embryology. [s.l.]: Lippincott Williams & Wilkins, 2009.Dostupné online. S. 163. (anglicky) 
  73. LEWIS, Ricki.Human Genetics: Concepts and Applications. 9. vyd. [s.l.]: McGraw−Hill, 2009.Dostupné online. S. 400. (anglicky) 
  74. William S. Klug, Michael R. Cummings, Charlotte A. Spencer.Concepts of Genetics. 8. vyd. [s.l.]: [s.n.], 2006. S. 567–568. (anglicky) 
  75. Klug & Cunnings, s. 550
  76. DROBNÍK, Jaroslav.Přehledy o dopadech transgenních plodin [online]. 2010.Dostupné online. 
  77. MIHULKA, Stanislav.Geneticky modifikovaná kukuřice a chrostíci [online]. 2007.Dostupné online. 
  78. Klug & Cunnings, s. 656–658
  79. JONES, Elizabeth D. Ancient DNA: s history of the science beforeJurassic Park.Studies in History and Philosophy of Science, Part C: Studies in History and Philosophy of Biological and Biomedical Sciences [online]. Elsevier B.V, 9. březen 2018. Online před tiskem.Dostupné online.ISSN1369-8486.doi:10.1016/j.shpsc.2018.02.001. (anglicky) 
  80. 12Paul V. Ullmann, Kyle Macauley, Richard D. Ash, Ben Shoup and John B. Scannella (2021).Taphonomic and Diagenetic Pathways to Protein Preservation, Part I: The Case ofTyrannosaurus rex SpecimenMOR 1125.Biology.10 (11): 1193. doi:https://doi.org/10.3390/biology10111193
  81. GUTIÉRREZ, Gabriel; MARÍN, Antonio. The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems.Molecular Biology and Evolution. 7. červenec 1998, svazek 15, čís.s. 926–929. [http://mbe.oxfordjournals.org/content/15/7/926.full.pdf Dostupné online [PDF, cit. 2016-11-22].ISSN737-4038. (anglicky) 
  82. PALMER, Roxanne. 'Jurassic Park' Method Of Cloning Dinosaurs From Amber-Preserved Insects Not Feasible, Scientists Say.Internation Business Times [online]. IBT Media Inc., 13. listopad 2009 [cit. 2016-11-22].Dostupné online. (anglicky) 
  83. 12SOCHA, Vladimír. Byla skutečně objevena dinosauří DNA?.Osel.cz [online]. 25. duben 2016.Dostupné online. 
  84. AUSTIN, Jeremy J; ROSS, Andrew J; SMITH, Andrew B; FORTEY, Richard A; THOMAS, Richard H. Problems of reproducibility – does geologically ancient DNA survive in amber–preserved insects?. S. 467–474.Proceedings of the Royal Society B [online]. 22. duben 1997 [cit. 2016-11-22]. Svazek 264, čís. 1381, s. 467–474.Dostupné online. Takédostupné ai jinde.ISSN1471-2954.doi:10.1098/rspb.1997.0067.PMID9149422. (anglicky) 
  85. PENNEY, David; WADSWORTH, Caroline; FOX, Graeme; KENNEDY, Sandra L; PREZIOSI, Richard F; BROWN, Terence A. Absence of Ancient DNA in Sub-Fossil Insect Inclusions Preserved in ‘Anthropocene’ Colombian Copal.PLoS ONE [online]. 11. září 2013 [cit. 2016-11-22]. Svazek 8, čís. 9: e73150.Dostupné online.ISSN1932-6203.doi:10.1371/journal.pone.0073150. (anglicky) 
  86. 'Game-changing' research could solve evolution mysteries.phys.org [online]. 2019-09-11 [cit. 2021-05-08].Dostupné online. (anglicky) 
  87. BAILLEUL, Alida M; ZHENG, Wenxia; HORNER, John R; HALL, Brian K; HOLLIDAY, Casey M; SCHWEITZER, Mary H. Evidence of proteins, chromosomes and chemical markers of DNA in exceptionally preserved dinosaur cartilage. S. 815–822.National Science Review [online]. 2020-04-01 [cit. 2021-05-08]. Roč. 7, čís. 4, s. 815–822.Dostupné online.ISSN2053-714X.doi:10.1093/nsr/nwz206. (anglicky) 
  88. SOCHA, Vladimír. Příběh gravidní tyranosauřice pokračuje.OSEL.cz [online]. 23. prosince 2021.Dostupné online. (česky)
  89. SOCHA, Vladimír. O krůček blíž k Jurskému parku.OSEL.cz [online]. 28. října 2021.Dostupné online. (česky)
  90. SOCHA, Vladimír. Stopy po DNA v chrupavce dinosauřího mláděte.OSEL.cz [online]. 9. července 2024.Dostupné online. (česky)
Česky
  • ROSYPAL, Stanislav.Úvod do molekulární biologie. První díl, Vstup do molekulární biologie. Molekulární biologie prokaryotické buňky. 4. inov. vyd. Brno: Rosypal, 2006. 289 s.ISBN 80-902562-5-2. 
  • VOET, Donald; VOET, Judith.Biochemie (původním názvem:Biochemistry). Překlad Arnošt Kotyk a kolektiv. 1. vyd. Praha: Victoria Publishing, 1995. xiv, 1325, xxiii s.ISBN 80-85605-44-9. 
  • ŠTÍPEK, Stanislav.Stručná biochemie : uchování a exprese genetické informace : učební texty. Praha: Medprint, 1997. 92 s.Dostupné online.ISBN 80-902036-2-0. 
  • ŠMARDA, Jan, et al.Metody molekulární biologie. Brno: MU Brno, 2005. 188 s.ISBN 80-210-3841-1. 
Anglicky

Externí odkazy

[editovat |editovat zdroj]

Hlavní typynukleových kyselin
Stavební kameny
Obecná charakteristika

Konformace (A-forma,B-forma,Z-forma) • Počet vláken (dsRNAssRNAdsDNAssDNAtřívláknová DNADNA-RNA vlákna)

Deoxyribonukleová kyselina

genomová DNA (gDNA) • komplementární DNA (cDNA) • chloroplastová DNA (cpDNA) • mitochondriální DNAmtDNA • jednořetězcová DNA o více kopiích (msDNA)

Ribonukleová kyselina
kódující

mediátorová RNA (mRNA) (pre-mRNA/hnRNA) • transferová RNA (tRNA) • ribozomální RNA (rRNA)

RNA interference

mikro RNA (miRNA) • malá interferující RNA (siRNA)

Úpravy RNA

malá jaderná RNA (snRNA) • malá jadérková RNA (snoRNA) •guide RNA

Analogy nukleových kyselin

XNA (GNA /TNA /HNA ) •LNAPNAmorpholino

Klonovací vektory

FagemidPlasmidLambda fágKosmidFosmidUmělý chromozom odvozený od fága P1 (PAC) bakterií (BAC) kvasinek (YAC) lidských chromozomůHAC

Složkynukleových kyselin
Nukleové báze
Purinové
Pyrimidinové
Běžnémodifikace nukleových bází
VRNA
V DNA
Nukleosidy

AdenosinUridinGuanosinCytidin • modifikované:Pseudouridin,Ribothymidin,Inosin (jako bázi obsahujehypoxantin)

Deoxynukleosidy
Ribonukleotidy

AMP (cAMP) •UMPGMP (cGMP) •CMPADPUDP (m5UDP) •GDPCDPATPUTPGTPCTP

Deoxyribonukleotidy

dAMPdTMPdUMPdGMPdCMPdADPdTDPdUDPdGDPdCDPdATPdTTPdUTP (m5UTP) •dGTPdCTP

Analogy nukleových kyselin
Citováno z „https://cs.wikipedia.org/w/index.php?title=DNA&oldid=25514005
Kategorie:
Skryté kategorie:

[8]ページ先頭

©2009-2026 Movatter.jp