Želvy se od ostatníchplazů odlišují především tím, že je jejichtělo obvykle chráněnokostěnýmkrunýřem, který se dělí na hřbetní (karapax) a břišní (plastron). Vyvinul se z jejichžeber. Do tohotořádu se zahrnuje i několik dnes jižvyhynulých druhů. Nejstarší druhy blízce příbuzné želvám žily před zhruba 220milionylet v obdobítriasu (rodOdontochelys), což z nich dělá jednu z nejstarších dosud žijících skupin plazů (o mnoho více nežještěři nebohadi).[1] Příslušníci skupiny Testudines (želvy) se poprvé prokazatelně objevili vestřední juře. Na světě žije více než 350druhů želv (k roku 2017 odhadem 356 druhů), řada z nich je silně ohrožených.[2][3] Želvy jsoustudenokrevníživočichové, což znamená, žeteplota jejich těla se mění podle okolního prostředí. Jsou typickydlouhověké, někteří jedinci se dožili prokazatelně i více než 180 let, např.želva sloní. Želvy jsou rozšířené prakticky po celém světě (mimo polární oblasti), zejména pak v oblastech s teplejším klimatem.[4]
V české přírodě se vyskytuje přibližně osm druhů želv. Nejhojnějším druhem želv v Česku je nepůvodníželva nádherná. Jedinou původní (a i ta byla údajně vysazena v 16. století) ježelva bahenní.[5]
Velikost želv se značně různí. Mořské druhy dorůstají obvykle obrovských rozměrů, zatímco sladkovodní želvy jsou typicky daleko menší (ale jsou zaznamenáni i jedinci 2 m dlouzí). Suchozemské želvy mohou dorůstat až do velikosti želv mořských. Největší želvou na světě je v současné doběkožatka velká[6] – mořská želva, která váží i přes 900 kg a jejíž krunýř je až 2 m dlouhý. Nejmenší želvou jeHomopus signatus signatus (poddruhželvy trpasličí), která měří necelých 8 cm a váží pouhých 140 g.[zdroj?]
Vprehistorických dobách byly po celém světě hojně rozšířenyželvy sloní,[zdroj?] avšak s příchodemčlověka tento druh téměřvyhynul. Předpokládá se, že je lidé lovili jako potravu. Nyní můžeme želvy sloní najít pouze naSeychelách aGalapágách. Dorůstají do velikosti přes 130 cm (délka) a váží okolo 300 kg. Mezi největší želvy celé geologické historie patřil obří mořskýsvrchnokřídový druhArchelon ischyros s délkou těla až 4,6 metru a s hmotností asi 2,2 tuny.[7] Podobně velký byl také jihoamerickýmiocenní druhStupendemys geographicus, jehož krunýř mohl být dlouhý až kolem 3,3 metru a hmotnost dosahovala asi 1145 kg.[8]
Želvy rozdělujeme do dvoupodřádů podle toho, jakým způsobem vtahujíkrk do krunýře: želvy skupinyCryptodira (skrytohrdlí) dokážou zatáhnout krk ahlavu pod páteř, želvy skupinyPleurodira (skrytohlaví) ji schovávají do krunýře na levou nebo pravou stranu. Jazyk je tlustý a nevysunutelný.
Komorovéoči většiny suchozemských želv směřují dolů na předměty před nimi, zatímco u některých vodních želv se oči nacházejí na vrchní části hlavy. Tyto druhy se dokážou v mělkých vodách skrýt předpredátory tak, že jsou zcela ponořeny ve vodě vyjma očí a nozder. Mořské želvy mají poblíž očížlázky produkující slanéslzy, čímž se zbavují nadbytečnésoli získané zmořské vody, kterou pijí.
Želvyvidí pravděpodobně velmi dobře vetmě, a to díky neobvykle vysokému počtutyčinek vsítnici oka.[zdroj?] Navíc nedokážou plynule sledovat pohybující sekořist. Tato schopnost je obyčejně vyhrazena pouze predátorům.Masožravé želvy ovšem dokážou velmi rychle pohnout hlavou a doslova chňapnout po kořisti. Vidí barevně.[zdroj?]
Želvy mají zkostnatělý zobák,čelisti používají ke kousání a žvýkání potravy. Místozubů jehorní idolní čelist pokrytarohovitými výčnělky. U masožravých želv jsou kvůli chytání potravy obvykle ostré, ubýložravých želv bývají vroubkované, což jim pomáhá při žvýkaní velmi tuhých rostlin. Připolykání potravy používají želvyjazyk, avšak na rozdíl od ostatních plazů ho nemohou vystrčit a chytat s ním potravu.[zdroj?]
Krunýř sloužil původně u želv při hrabání v zemi.[9] Jednotlivé části krunýře vznikaly u želv postupně v průběhu triasového období.[10][11]
Horní část krunýře se nazývákarapax, spodní část pakplastron a dohromady jsou spojeny po stranách tzv. mosty. Obvykle je karapax složen z 5 hřbetních, 8 žeberních a 24 postranních desek.[zdroj?] Právě počet těchto desek spolu s tvarem plastronu je jedním z hlavních rozlišovacích znaků pro podobné druhy. Ventrální část krunýře, tedy plastron, vznikl dlouhodobým vývojem z tzv. břišních žeber (gastrálií).[12]
Vnitřní část krunýře tvoří přibližně 60 kostí.[zdroj?] S krunýřem je tělo želvy pevně spojeno páteřními a žeberními kostmi, což v důsledku znamená, že želva nemůže ze svého krunýře vylézt. Vnější část krunýře je většinou pokryta štítovými destičkami zkeratinu, některé druhy mají krunýř krytý jen silnoukůží.[zdroj?]
Tvar krunýře nám velmi napomáhá při zjišťování způsobu života želvy. Značná část suchozemských želv má veliký a těžký krunýř kupolovitého tvaru, který znemožňuje predátorům uchopit ho do čelistí a rozdrtit.Želva skalní má naopak plochý a ohebný krunýř, díky kterému se snadno skryje veskalních trhlinách.[zdroj?]
Většina vodních želv má krunýř plochý,hydrodynamického tvaru, a tak mohou snadno a rychleplavat apotápět se. Krunýř vodních želv je také daleko lehčí než u suchozemských druhů, protože jsou mezi kostmi velké mezery, tzv.fontanely.
Podle tvaru plastronu se zhruba ve třech letech želvy dá poznat pohlaví. Sameček má plastron vypouklý nahoru, což mu pomáhá při páření.[zdroj?]
Barva krunýře se velmi různí, ale obvykle je to černá, hnědá a olivově zelená. Některé druhy mají na krunýři i červené, oranžové, žluté nebo šedé tečky, linky nebo nepravidelné skvrnky. Jednou z nejkrásněji zbarvených želv ježelva ozdobná, která má žlutý plastron a černý nebo olivově zelený karpax s červenými značkami okolo jeho okraje.
Tvar krunýře se u různých želv může lišit v závislosti na jejich ekologických adaptacích i na obývaném ekosystému. Odlišnosti jsou však příliš malé a nedostatečné k tomu, aby bylo možné na jejich základě stanovit typ ekosystému u vyhynulých druhů (na základě fosilních krunýřů pravěkých želv).[13]
Vnější strana krunýře je součástíkůže, kdy každá štítová destička odpovídá jedné modifikovanéšupině. Zbytek kůže je tvořen mnohem menšími šupinkami, podobně jako u ostatníchplazů. Vodní želvy nesvlékají kůži naráz jako hadi, ale neustále po malých kouskách. Pokud je želva chována v akváriu, lze ve vodě najít částečky mrtvé kůže.
Suchozemské želvy také svlékají kůži, ale ta se oproti vodním želvám nikdy neodlupuje a vrství se do tlustých ‘kopečků’, které mají podobuletokruhů. Obecně panuje představa, že spočítáním těchto letokruhů dostaneme věk želvy. Tato metoda ale není příliš přesná, zejména z toho důvodu, že rychlost růstu nových destiček se mění (za rok jich při příznivých podmínkách může narůst i několik) a že některé destičky nakonec z krunýře odpadnou.[zdroj?]
Suchozemské želvy jsou proslulé svým pomalýmtempem pohybu, který je dán jednak jejich těžkým a velkým krunýřem, a jednak relativně neefektivním způsobem postaveníkončetin, které jsou roztažené do stran jako u ještěrek.
Sladkovodní želvy, které žijí částečně i nasouši, mají na končetináchplovací blány a dlouhédrápy. Pomocí těchto drápů se mohou vyšplhat na břeh či plovoucí klády, kde se pak rády vyhřívají na slunci.Samci mívají drápy delší a používají je kestimulacisamice připáření. Podoba těchto anatomických znaků i velikost vajíček byla v evoluci želv v postupu generací přizpůsobována měnícím se podmínkám prostředí.[14]
Styl plavání sladkovodních želv připomíná psa (jakoby běh ve vodě), končetiny ale míří do stran. Velké druhy želv plavou spíše méně, ty největší už často jen chodí po dněřek čijezer.
Plovací blány mají téměř všechny druhy sladkovodních želv, ale několik druhů, např.karetka novoguinejská, má místo končetinploutve. Tyto druhy želv pak plavou stejným stylem jako mořské želvy.
Mořské želvy žijí téměř výhradně ve vodě, a tak mají místo nohou ploutve. Ve vodě pak vypadají jako by se vznášely či létaly. Předními končetinami pohybují nahoru a dolů, zadní končetiny nejsou používány k pohybu ale spíše ke kormidlování. Na souši mají velmi omezenou pohyblivost, a tak na břeh vylézají pouze samice, aby nakladlyvejce. Pohybují se velmi pomalu a namáhavě se postrkují dopředu pomocí ploutví. Zadními končetinami vyhrabou samice díru, nakladou do nich vejce, a zahrabou je pískem.
I přesto, že některé druhy stráví značnou částživota podvodou, potřebujídýchatvzduch a musí tedy v pravidelnýchintervalech vyplouvat na povrch, aby doplnily plíce čerstvým vzduchem. Část života stráví i na souši. Mořské želvy kladou vejce na suchých písečných plážích.Vědci[kdo?] také zkoumají schopnost některýchaustralských sladkovodních želv dýchat pod vodou.[zdroj?] Některé druhy mají prostornoukloaku, jejíž sliznice tvoří prstovité výběžky,papily, které mají bohaté krevní zásobení a zvyšují povrch kloaky. Želvy tak mohou přijímatkyslík rozpuštěný ve vodě, papily fungují podobně jako rybížábry.
Suchozemské želvy jsou převážněbýložravé nebovšežravé. Některé druhy konzumujíhmyz,plže a červy. Sladkovodní želvy jsou převážněmasožravé - lovíryby a vodní bezobratlé živočichy. Mořské želvy se živí převážněmedúzami,houbami a dalšími mořskými živočichy, s výjimkoukarety obrovské, která se živí vodními rostlinami.
Třída plazů jeparafyletickýtaxon, protože v něm nejsou zahrnuti taképtáci (při širším pojetí plazů takésavci).[15] Více informací najdete na stránce věnovanéplazům.
První želvy se na zemi objevily už v éředinosaurů, zhruba před 230 miliony lety[16] – jsou jednou z mála skupin v současnosti žijících plazů, které známe již z obdobítriasu.[17] K evoluční radiaci želv dochází po tzv.Karnské pluviální epizodě, hromadném vymírání, které nastalo zhruba před 235 miliony let.[18] Jejich evoluce byla poměrně spletitá a vykazuje množství událostí evolučních radiací i vymírání.[19] To jasně dokládají například zmapované změny v biodiverzitě jihoamerických želv od triasu až po neogén.[20][21] Želvy jsou jedinou přeživší větví prastarého kladistického podstromuanapsid, který obsahuje skupiny jakoMillerettidae,Procolophonoidea aPareiasauria.Lebka všech druhů anapsid postrádá otvory vespánkové oblasti. Všechny ostatní žijící druhyamniot mají právě tyto lebeční otvory. Většina anapsid vyhynula v pozdnímpermu s výjimkou skupinyProcolophonoidea a předchůdců želv, kteří vymřeli později. Stále probíhá spor o to, zda se želvy vyvinuly ve vodním prostředí nebo spíše pod zemí (jako hrabaví živočichové).[22] Do mořského prostředí se nicméně tito plazi v průběhu vývoje opakovaně vraceli.[23] V roce 2018 byl publikován popis první známé želvy (druhEorhynchochelys sinensis) s ještě nevyvinutým krunýřem, ale zároveň přítomným bezzubým zobákovitým zakončením čelistí. Tentodiapsidní plaz žil v období pozdníhotriasu (asi před 228 miliony let) na území dnešníČíny.[24]
Historicky první popsanou triasovou želvou byl enigmatický druhChelytherium obscurum, formálně popsaný již roku1863. Později však tento taxon upadl do částečného zapomnění, až ve 21. století byl pak znovu revidován, a dnes je pokládán za zástupce čelediProterochersidae.[25]
Detailní výzkum několika nových archaických zástupců želv z období druhohorníhotriasu dokládá, že vývoj směřující k moderním želvám byl velmi pozvolný a například formování želvího krunýře probíhalo v množství postupných kroků a trvalo miliony let.[26] Evoluce suchozemských želv probíhala relativně pomalu a pozvolna, od skromných vývojových počátků v triasu až po rapidní, takřka globální rozšíření v průběhu kenozoika.[27]
Nicméně nedávno bylo prokázáno, že typická vlastnostanapsid, kterou převzala i želví lebka, nemusí být znak určující, že jsou želvy potomci anapsid, ale spíše že jde o případkonvergentníevoluce. Nejnovějšífylogenetické studie proto zařadily želvy meziDiapsida, o něco blíže kšupinatým než k archosaurům.[28][29][30] Všechny nové studie podporují nové zařazení želv, i když některé přiřazují želvy blíže k archosaurům.[31] Přezkoumáním předchozích fylogenetických stromů, které dokazovaly příbuznost želv s anapsida, bylo zjištěno, že mylné zařazení želv bylo způsobeno jak počátečním předpokladem, že želvy patří mezi Anapsida (a spíše zkoumaly, jaký typ anapsid želvy jsou), tak nedostatečně širokým vzorkemfosilních a recentníchtaxonů nutných pro sestrojeníkladogramu. Přestože věc ještě není uzavřena, většina vědců se nyní přiklání k názoru, že želvy jsou diapsidní.[32][33][28]
Mezi vývojově nejstarší známé želvy patří rodyProganochelys aAustralochelys, jejich zástupci na Zemi žili ještě před oddělením vznikem sesterských linií – skrytohlavých a skrytohrdlých.[34] RodAustralochelys je s těmito želvami spojován do společné skupinyRhaptochelydia. V průběhu vývoje se objevily i gigantické druhy želv – v křídových mořích obří rodArchelon, na souších v pleistocénu pak například rodMegalochelys.[35]
V současnosti je značná část želví biodiverzity narušována a ohrožována činností člověka. Z celkového počtu 356 recentních druhů je celých 61 % přímo ohroženo vyhynutím.[36] Problémem pro želvy je také lidskou civilizací vyvolaná pozvolná změna globálního klimatu, která může v budoucnu mnohé druhy želv významně ohrozit.[37]
V současnosti je více než polovina známých druhů želv (ze 482 recentních taxonů) přímo ohrožena vyhynutím.[38]
V roce 2000 vyhlásila American Tortoise Rescue na23. května Světový den želv. American Tortoise Rescue jenezisková organizace založená za účelem ochrany všech druhů želv po celém světě a je sponzorem tohoto dne.[39]
↑LI, Chun; WU, Xiao-Chun; RIEPPEL, Olivier; WANG, Li-Ting; ZHAO, Li-Jun. An ancestral turtle from the Late Triassic of southwestern China. S. 497–501.Nature [online]. 2008-11. Roč. 456, čís. 7221, s. 497–501.Dostupné online.ISSN0028-0836.doi:10.1038/nature07533. (anglicky)
↑ What If There Were No More Turtles?.Animals [online]. 2018-09-28 [cit. 2019-11-04].Dostupné online. (anglicky)
↑Tortoise and Freshwater Turtle Specialist Group [online]. [cit. 2019-11-04].Dostupné online.
↑CARBOT-CHANONA, Gerardo; RIVERA-VELÁZQUEZ, Gustavo; JIMÉNEZ-HIDALGO, Eduardo; REYNOSO, Víctor Hugo. The fossil record of turtles and tortoises (Testudines) of Mexico, Central America and the Caribbean Islands, with comments on its taxonomy and paleobiogeography: a bibliographic review. S. 269–283.Revista Mexicana de Ciencias Geológicas [online]. 2020-11-04. Roč. 37, čís. 3, s. 269–283.Dostupné online.doi:10.22201/cgeo.20072902e.2020.3.1581. (anglicky)
↑ŠANDEROVÁ, Marcela; ŠANDERA, Martin.Želvy v české přírodě [online]. Muzeum přírody Český ráj, 2014-04-28 [cit. 2023-04-27].Dostupné online.
↑CADENA, E.-A.; SCHEYER, T. M.; CARRILLO-BRICEÑO, J. D.; SÁNCHEZ, R.; AGUILERA-SOCORRO, O. A; VANEGAS, A.; PARDO, M. The anatomy, paleobiology, and evolutionary relationships of the largest extinct side-necked turtle. S. eaay4593.Science Advances [online]. 2020-02-14. Roč. 6, čís. 7, s. eaay4593.Dostupné online.doi:10.1126/sciadv.aay4593. (anglicky)
↑Denver Museum of Nature & Science. Researchers discover real reason why turtles have shells.phys.org [online]. 2016-07-15 [cit. 2023-04-27].Dostupné online. (anglicky)
↑SZCZYGIELSKI, Tomasz; SULEJ, Tomasz. The early composition and evolution of the turtle shell (Reptilia, Testudinata). S. 375–415.Palaeontology [online]. 2019-05. Roč. 62, čís. 3, s. 375–415.Dostupné online.doi:10.1111/pala.12403. (anglicky)
↑HAMILTON, Ian. How did the turtle get its shell?.The Official PLOS Blog [online]. 2019-07-30 [cit. 2023-04-27].Dostupné online. (anglicky)
↑SCHOCH, Rainer R.; KLEIN, Nicole; SCHEYER, Torsten M.; SUES, Hans-Dieter. Microanatomy of the stem-turtle Pappochelys rosinae indicates a predominantly fossorial mode of life and clarifies early steps in the evolution of the shell. S. 10430.Scientific Reports [online]. 2019-07-18. Roč. 9, čís. 1, s. 10430. Article number: 10430.Dostupné online.doi:10.1038/s41598-019-46762-z. (anglicky)
↑DZIOMBER, Laura; JOYCE, Walter G.; FOTH, Christian. The ecomorphology of the shell of extant turtles and its applications for fossil turtles. S. e10490.PeerJ [online]. 2020-12-22. Roč. 8, s. e10490.Dostupné online.doi:10.7717/peerj.10490. (anglicky)
↑JORGEWICH-COHEN, Gabriel; HENRIQUE, Rafael S.; DIAS, Pedro Henrique; SÁNCHEZ-VILLAGRA, Marcelo R. The evolution of reproductive strategies in turtles. S. e13014.PeerJ [online]. 2022-03-11. Roč. 10, s. e13014.Dostupné online.doi:10.7717/peerj.13014. (anglicky)
↑GABLE, Simone M; BYARS, Michael I; LITERMAN, Robert; TOLLIS, Marc. A Genomic Perspective on the Evolutionary Diversification of Turtles. S. 1331–1347.Systematic Biology [online]. 2022-10-12. Roč. 71, čís. 6, s. 1331–1347.Dostupné online.doi:10.1093/sysbio/syac019. (anglicky)
↑LYSON, Tyler R.; BEVER, Gabriel S. Origin and Evolution of the Turtle Body Plan. S. 143–166.Annual Review of Ecology, Evolution, and Systematics [online]. 2020-11-02. Roč. 51, čís. 1, s. 143–166.Dostupné online.doi:10.1146/annurev-ecolsys-110218-024746. (anglicky)
↑University of Bristol. Discovery of a new mass extinction.phys.org [online]. 2020-09-16 [cit. 2023-04-27].Dostupné online. (anglicky)
↑LICHTIG, Asher; LUCAS, Spencer. Chinlechelys from the Upper Triassic of New Mexico, USA, and the origin of turtles.Palaeontologia Electronica [online]. 2021. Roč. 24, čís. 1.Dostupné online.doi:10.26879/886. (anglicky)
↑VLACHOS, Evangelos; RANDOLFE, Enrique; STERLI, Juliana; LEARDI, Juan Martin. Changes in the Diversity of Turtles (Testudinata) in South America from the Late Triassic to the Present. S. 619.Ameghiniana [online]. 2018-01-01. Roč. 55, čís. 6, s. 619.Dostupné online.doi:10.5710/AMGH.18.09.2018.3226. (anglicky)
↑DE LA FUENTE, Marcelo S.; STERLI, Juliana; KRAPOVICKAS, Verónica. Triassic turtles from Pangea: The legacy from South America. S. 102910.Journal of South American Earth Sciences [online]. 2021-01. Roč. 105, s. 102910.Dostupné online.doi:10.1016/j.jsames.2020.102910. (anglicky)
↑EVERS, Serjoscha W.; BENSON, Roger B. J. A new phylogenetic hypothesis of turtles with implications for the timing and number of evolutionary transitions to marine lifestyles in the group. S. 93–134.Palaeontology [online]. 2019-01. Roč. 62, čís. 1, s. 93–134.Dostupné online.doi:10.1111/pala.12384. (anglicky)
↑LI, Chun; FRASER, Nicholas C.; RIEPPEL, Olivier; WU, Xiao-Chun. A Triassic stem turtle with an edentulous beak. S. 476–479.Nature [online]. 2018-08. Roč. 560, čís. 7719, s. 476–479.Dostupné online.doi:10.1038/s41586-018-0419-1. (anglicky)
↑SZCZYGIELSKI, Tomasz. Obscure by name: solving the enigma of Chelytherium obscurum, the first described Triassic turtle. S. 1111–1122.Zoological Journal of the Linnean Society [online]. 2021-07-30. Roč. 192, čís. 4, s. 1111–1122.Dostupné online.doi:10.1093/zoolinnean/zlaa139. (anglicky)
↑SCHOCH, Rainer R.; SUES, Hans‐Dieter. The origin of the turtle body plan: evidence from fossils and embryos. S. 375–393.Palaeontology [online]. 2020-05. Roč. 63, čís. 3, s. 375–393.Dostupné online.doi:10.1111/pala.12460. (anglicky)
↑CLEARY, Terri J.; BENSON, Roger B. J.; HOLROYD, Patricia A.; BARRETT, Paul M. Tracing the patterns of non‐marine turtle richness from the Triassic to the Palaeogene: from origin to global spread. S. 753–774.Palaeontology [online]. 2020-09. Roč. 63, čís. 5, s. 753–774.Dostupné online.doi:10.1111/pala.12486. (anglicky)
↑abRIEPPEL, O.; DEBRAGA, M. Turtles as diapsid reptiles. S. 453–455.Nature [online]. 1996-12. Roč. 384, čís. 6608, s. 453–455.Dostupné online.doi:10.1038/384453a0. (anglicky)
↑LYSON, Tyler R.; SPERLING, Erik A.; HEIMBERG, Alysha M., Jacques A. Gauthier, Benjamin L. King, Kevin J. Peterson. MicroRNAs support a turtle + lizard clade.Biology Letters [online]. 20. červenec 2011. Online před tiskem.Dostupné online.ISSN1744-957X.doi:10.1098/rsbl.2011.0477. (anglicky)
↑Yale University. New discovery places turtles next to lizards on family tree.phys.org [online]. 2011-07-20 [cit. 2023-04-27].Dostupné online. (anglicky)
↑CHIARI, Ylenia; CAHAIS, Vincent; GALTIER, Nicolas, DELSUC, Frédéric. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). S. 1–44.BMC Biology [online]. 27. červenec 2012. Svazek 10, čís. 65, s. 1–44.Dostupné online. PDF[1].ISSN1741-7007.doi:10.1186/1741-7007-10-65.PMID22839781. (anglicky)
↑LOVICH, Jeffrey E; ENNEN, Joshua R; AGHA, Mickey; GIBBONS, J Whitfield. Where Have All the Turtles Gone, and Why Does It Matter?. S. 771–781.BioScience [online]. 2018-10-01. Roč. 68, čís. 10, s. 771–781.Dostupné online.doi:10.1093/biosci/biy095. (anglicky)
↑DAVIS, Josh. Turtles have lived for 230 million years - but will they survive climate change?.nhm.ac.uk [online]. 2020-05-22 [cit. 2023-04-27].Dostupné online. (anglicky)
↑STANFORD, Craig B.; IVERSON, John B.; RHODIN, Anders G.J.; PAUL VAN DIJK, Peter; MITTERMEIER, Russell A.; KUCHLING, Gerald; BERRY, Kristin H. Turtles and Tortoises Are in Trouble. S. R721–R735.Current Biology [online]. 2020-06. Roč. 30, čís. 12, s. R721–R735.Dostupné online.doi:10.1016/j.cub.2020.04.088. (anglicky)
↑World Turtle Day [online]. worldturtleday.org [cit. 2023-04-27].Dostupné online. (anglicky)