Movatterモバイル変換


[0]ホーム

URL:


StepGWR: A Hybrid Spatial Model for Prediction and Capturing SpatialVariation in the Data

It is a hybrid spatial model that combines the variable selection capabilities of stepwise regression methods with the predictive power of the Geographically Weighted Regression(GWR) model.The developed hybrid model follows a two-step approach where the stepwise variable selection method is applied first to identify the subset of predictors that have the most significant impact on the response variable, and then a GWR model is fitted using those selected variables for spatial prediction at test or unknown locations. For method details,see Leung, Y., Mei, C. L. and Zhang, W. X. (2000).<doi:10.1068/a3162>.This hybrid spatial model aims to improve the accuracy and interpretability of GWR predictions by selecting a subset of relevant variables through a stepwise selection process.This approach is particularly useful for modeling spatially varying relationships and improving the accuracy of spatial predictions.

Version:0.1.0
Depends:R (≥ 2.10)
Imports:stats,qpdf,numbers,MASS
Suggests:knitr,rmarkdown,testthat (≥ 3.0.0)
Published:2023-05-15
DOI:10.32614/CRAN.package.StepGWR
Author:Nobin Chandra Paul [aut, cre, cph], Moumita Baishya [aut]
Maintainer:Nobin Chandra Paul <nobin.paul at icar.gov.in>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2.0)]
NeedsCompilation:no
CRAN checks:StepGWR results

Documentation:

Reference manual:StepGWR.html ,StepGWR.pdf

Downloads:

Package source: StepGWR_0.1.0.tar.gz
Windows binaries: r-devel:StepGWR_0.1.0.zip, r-release:StepGWR_0.1.0.zip, r-oldrel:StepGWR_0.1.0.zip
macOS binaries: r-release (arm64):StepGWR_0.1.0.tgz, r-oldrel (arm64):StepGWR_0.1.0.tgz, r-release (x86_64):StepGWR_0.1.0.tgz, r-oldrel (x86_64):StepGWR_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=StepGWRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp