4
\$\begingroup\$

I doing some algorithm reviews and am soliciting opinions on my implementation of the Merge Sort in Python.

Anything from readability to optimization is fair game.

In particular, I am wondering if accessing the elements of a list usingpop(0) somehow slows things down. I am doing this because I am not aware of a good way to peek into the last for the last element.

Note: The code works on both Python 3 and 2.

import mathdef merge(left, right):    merge_result = []    while (len(left) > 0 and len(right) > 0):        if left[0] > right[0]:            merge_result.append(right.pop(0))        else:            merge_result.append(left.pop(0))    while (len(left)):            merge_result.append(left.pop(0))    while (len(right)):            merge_result.append(right.pop(0))    return merge_resultdef merge_sort(array_to_be_sorted):    if len(array_to_be_sorted) < 2:        return array_to_be_sorted    middle = math.floor(len(array_to_be_sorted) / 2)    left = array_to_be_sorted[0:middle]    right = array_to_be_sorted[middle:]    return merge(merge_sort(left),merge_sort(right))
Peilonrayz's user avatar
Peilonrayz
44.6k7 gold badges80 silver badges158 bronze badges
askedJul 13, 2017 at 14:55
MadPhysicist's user avatar
\$\endgroup\$

2 Answers2

2
\$\begingroup\$

.pop(0) would remove the first element from a list - this is a \$O(n)\$ operation since everything after must "shift" (Time Complexity reference).

I would not pop fromleft andright subarrays and instead keep track of indexes in both theleft andright lists:

def merge(left, right):    merge_result = []    left_index = right_index = 0    while left_index < len(left) and right_index < len(right):        if left[left_index] > right[right_index]:            merge_result.append(right[right_index])            right_index += 1        else:            merge_result.append(left[left_index])            left_index += 1    merge_result += left[left_index:]    merge_result += right[right_index:]    return merge_result

And, if you are preparing for an interview, make sure to write this function from memory couple times - it'll persist in your memory pretty soon - focus on the pattern (using left and right indexes for merging), don't try to remember the code line-by-line.

answeredJul 13, 2017 at 15:40
alecxe's user avatar
\$\endgroup\$
1
\$\begingroup\$

General issues

Here

while (len(left) > 0 and len(right) > 0):    ....

you can write just

while len(left) > 0 and len(right) > 0:    ....

or even:

while left and right:    ...

Also,

while (len(right)):        merge_result.append(right.pop(0))

above the second line is overintended. It should be

while len(right):    merge_result.append(right.pop(0))

Here,

middle = math.floor(len(array_to_be_sorted) / 2)

just do

middle = len(array_to_be_sorted) // 2

Performance

This is my primary concern. Your implementation works correctly, but, alas, it's slow:

OP's mergesort in 4356 milliseconds.coderodde's mergesort in 700 milliseconds.Native sort in 33 milliseconds.OP's mergesort agrees with native sort: Truecoderodde's mergesort agrees with native sort: True

As you can see, the native sort routine is unbeatable since it is implemented in native machine code (apart from being Timsort (as far as I know)). What comes to routine I provided, it runs in\$\Theta(n \log n)\$ time using a swapping array pattern: it creates an auxiliary array with the same contents as the actual array to sort and keeps alternating between the two. The idea is that, when merging, we do merge from one array to another, which avoids creating new smaller arrays to hold the left and right parts of the input range. All in all, I had this in mind:

import mathimport randomimport timedef millis():    return int(round(time.time() * 1000))def op_merge(left, right):    merge_result = []    while left and right:        if left[0] > right[0]:            merge_result.append(right.pop(0))        else:            merge_result.append(left.pop(0))    while len(left):        merge_result.append(left.pop(0))    while len(right):        merge_result.append(right.pop(0))    return merge_resultdef op_merge_sort(array_to_be_sorted):    if len(array_to_be_sorted) < 2:        return array_to_be_sorted    middle = math.floor(len(array_to_be_sorted) / 2)    left = array_to_be_sorted[0:middle]    right = array_to_be_sorted[middle:]    return op_merge(op_merge_sort(left), op_merge_sort(right))def coderodde_merge(source_array, target_array, left_start_index, right_start_index, right_end_index):    left_end_index = right_start_index    # Just rename:    left_index = left_start_index    right_index = right_start_index    target_array_index = left_start_index    while left_index < left_end_index and right_index < right_end_index:        if source_array[left_index] > source_array[right_index]:            target_array[target_array_index] = source_array[right_index]            right_index += 1        else:            target_array[target_array_index] = source_array[left_index]            left_index += 1        target_array_index += 1    while left_index < left_end_index:        target_array[target_array_index] = source_array[left_index]        target_array_index += 1        left_index += 1    while right_index < right_end_index:        target_array[target_array_index] = source_array[right_index]        target_array_index += 1        right_index += 1def coderodde_merge_sort_impl(source_array, target_array, start_index, end_index):    range_len = end_index - start_index    if range_len < 2:        return    middle_index = start_index + range_len // 2    coderodde_merge_sort_impl(target_array, source_array, start_index, middle_index)    coderodde_merge_sort_impl(target_array, source_array, middle_index, end_index)    coderodde_merge(source_array, target_array, start_index, middle_index, end_index)def coderodde_merge_sort(array):    aux_array = array[:]    coderodde_merge_sort_impl(aux_array, array, 0, len(array))def benchmark_op_mergesort():    start_time = millis()    arr = op_merge_sort(array1)    end_time = millis()    print("OP's mergesort in", end_time - start_time, "milliseconds.")    return arrdef benchmark_coderodde_mergesort():    start_time = millis()    coderodde_merge_sort(array2)    end_time = millis()    print("coderodde's mergesort in", end_time - start_time, "milliseconds.")def benchmark_native_sort():    start_time = millis()    array3.sort()    end_time = millis()    print("Native sort in", end_time - start_time, "milliseconds.")def arrays_are_same(arr1, arr2):    if len(arr1) != len(arr2):        return False    for i in range(len(arr1)):        if arr1[i] != arr2[i]:            return False    return Truearray1 = []for i in range(200_000):    array1.append(random.randint(-1_000_000, 2_000_000))array2 = array1[:]array3 = array1[:]array1 = benchmark_op_mergesort()benchmark_coderodde_mergesort()benchmark_native_sort()print("OP's mergesort agrees with native sort:", arrays_are_same(array1, array3))print("coderodde's mergesort agrees with native sort:", arrays_are_same(array2, array3))
answeredJun 7, 2020 at 6:42
coderodde's user avatar
\$\endgroup\$

You mustlog in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.