Class ChatModel (1.122.0) Stay organized with collections Save and categorize content based on your preferences.
ChatModel(model_id:str,endpoint_name:typing.Optional[str]=None)ChatModel represents a language model that is capable of chat.
Examples::
chat_model = ChatModel.from_pretrained("chat-bison@001")chat = chat_model.start_chat( context="My name is Ned. You are my personal assistant. My favorite movies are Lord of the Rings and Hobbit.", examples=[ InputOutputTextPair( input_text="Who do you work for?", output_text="I work for Ned.", ), InputOutputTextPair( input_text="What do I like?", output_text="Ned likes watching movies.", ), ], temperature=0.3,)chat.send_message("Do you know any cool events this weekend?")Methods
ChatModel
ChatModel(model_id:str,endpoint_name:typing.Optional[str]=None)Creates a LanguageModel.
This constructor should not be called directly.UseLanguageModel.from_pretrained(model_name=...) instead.
from_pretrained
from_pretrained(model_name:str)->vertexai._model_garden._model_garden_models.TLoads a _ModelGardenModel.
| Exceptions | |
|---|---|
| Type | Description |
ValueError | If model_name is unknown. |
ValueError | If model does not support this class. |
get_tuned_model
get_tuned_model(tuned_model_name:str,)->vertexai.language_models._language_models._LanguageModelLoads the specified tuned language model.
list_tuned_model_names
list_tuned_model_names()->typing.Sequence[str]Lists the names of tuned models.
start_chat
start_chat(*,context:typing.Optional[str]=None,examples:typing.Optional[typing.List[vertexai.language_models.InputOutputTextPair]]=None,max_output_tokens:typing.Optional[int]=None,temperature:typing.Optional[float]=None,top_k:typing.Optional[int]=None,top_p:typing.Optional[float]=None,message_history:typing.Optional[typing.List[vertexai.language_models.ChatMessage]]=None,stop_sequences:typing.Optional[typing.List[str]]=None)->vertexai.language_models.ChatSessionStarts a chat session with the model.
tune_model
tune_model(training_data:typing.Union[str,pandas.core.frame.DataFrame],*,train_steps:typing.Optional[int]=None,learning_rate_multiplier:typing.Optional[float]=None,tuning_job_location:typing.Optional[str]=None,tuned_model_location:typing.Optional[str]=None,model_display_name:typing.Optional[str]=None,default_context:typing.Optional[str]=None,accelerator_type:typing.Optional[typing.Literal["TPU","GPU"]]=None,tuning_evaluation_spec:typing.Optional[vertexai.language_models.TuningEvaluationSpec]=None)->vertexai.language_models._language_models._LanguageModelTuningJobTunes a model based on training data.
This method launches and returns an asynchronous model tuning job.Usage:
tuning_job = model.tune_model(...)... do some other worktuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete| Exceptions | |
|---|---|
| Type | Description |
ValueError | If the "tuning_job_location" value is not supported |
ValueError | If the "tuned_model_location" value is not supported |
RuntimeError | If the model does not support tuning |
AttributeError | If any attribute in the "tuning_evaluation_spec" is not supported |
tune_model_rlhf
tune_model_rlhf(*,prompt_data:typing.Union[str,pandas.core.frame.DataFrame],preference_data:typing.Union[str,pandas.core.frame.DataFrame],model_display_name:typing.Optional[str]=None,prompt_sequence_length:typing.Optional[int]=None,target_sequence_length:typing.Optional[int]=None,reward_model_learning_rate_multiplier:typing.Optional[float]=None,reinforcement_learning_rate_multiplier:typing.Optional[float]=None,reward_model_train_steps:typing.Optional[int]=None,reinforcement_learning_train_steps:typing.Optional[int]=None,kl_coeff:typing.Optional[float]=None,default_context:typing.Optional[str]=None,tuning_job_location:typing.Optional[str]=None,accelerator_type:typing.Optional[typing.Literal["TPU","GPU"]]=None,tuning_evaluation_spec:typing.Optional[vertexai.language_models.TuningEvaluationSpec]=None)->vertexai.language_models._language_models._LanguageModelTuningJobTunes a model using reinforcement learning from human feedback.
This method launches and returns an asynchronous model tuning job.Usage:
tuning_job = model.tune_model_rlhf(...)... do some other worktuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete| Exceptions | |
|---|---|
| Type | Description |
ValueError | If the "tuning_job_location" value is not supported |
RuntimeError | If the model does not support tuning |
Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-10-30 UTC.