Cloud Storage to JDBC template

Use the Serverless for Apache Spark Cloud Storage to JDBC template to extractdata from Cloud Storage to JDBC databases.

Use the template

Run the template using the gcloud CLI or DataprocAPI.

gcloud

Before using any of the command data below, make the following replacements:

  • PROJECT_ID: Required. Your Google Cloud project ID listed in theIAM Settings.
  • REGION: Required.Compute Engine region.
  • SUBNET: Optional. If a subnet is not specified, the subnet in the specified REGION in thedefault network is selected.

    Example:projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME

  • JDBC_CONNECTOR_CLOUD_STORAGE_PATH: Required. The full Cloud Storage path, including the filename, where the JDBC connector jar is stored. You can use the following commands to download JDBC connectors for uploading to Cloud Storage:
    • MySQL:
      wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
    • Postgres SQL:
      wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
    • Microsoft SQL Server:
      wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
    • Oracle:
      wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
  • CLOUD_STORAGE_PATH: Required. Cloud Storage path where input files are stored.

    Example:gs://dataproc-templates/cloud_storage_to_jdbc_input

  • FORMAT: Required. Output data format. Options:avro,parquet,csv ororc. Default:avro.Note: Ifavro, you must add "file:///usr/lib/spark/connector/spark-avro.jar" to thejars gcloud CLI flag or API field.

    Example (thefile:// prefix references a Serverless for Apache Spark jar file):

    --jars=file:///usr/lib/spark/connector/spark-avro.jar, [, ... other jars]
  • MODE: Optional. Write mode for Cloud Storage output. Options:Append,Overwrite,Ignore, orErrorIfExists. Default:ErrorIfExists.
  • The following variables are used to construct the requiredJDBC_CONNECTION_URL:
    • JDBC_HOST
    • JDBC_PORT
    • JDBC_DATABASE, or, for Oracle,JDBC_SERVICE
    • JDBC_USERNAME
    • JDBC_PASSWORD

    Construct theJDBC_CONNECTION_URL using one of the following connector-specific formats:

    • MySQL:
      jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
    • Postgres SQL:
      jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
    • Microsoft SQL Server:
      jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD
    • Oracle:
      jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=
  • JDBC_TABLE: Required. Table name where output will be written.
  • DRIVER: Required. The JDBC driver that is used for the connection:
    • MySQL:
      com.mysql.cj.jdbc.Driver
    • Postgres SQL:
      org.postgresql.Driver
    • Microsoft SQL Server:
      com.microsoft.sqlserver.jdbc.SQLServerDriver
    • Oracle:
      oracle.jdbc.driver.OracleDriver
  • TEMPLATE_VERSION: Required. Specifylatest for the latest template version, or the date of a specific version, for example,2023-03-17_v0.1.0-beta (visitgs://dataproc-templates-binaries or rungcloud storage ls gs://dataproc-templates-binaries to list available template versions).
  • LOG_LEVEL: Optional. Level of logging. Can be one ofALL,DEBUG,ERROR,FATAL,INFO,OFF,TRACE, orWARN. Default:INFO.
  • NUM_PARTITIONS: Optional. The maximum number of partitions that can be used for parallelism of table writes. If specified, this value is used for the JDBC output connection. Defaults to the initial partitions set by Sparkread().
  • BATCH_SIZE: Optional. Number of records to insert per round trip. Default:1000.
  • SERVICE_ACCOUNT: Optional. If not provided, thedefault Compute Engine service account is used.
  • PROPERTY andPROPERTY_VALUE: Optional. Comma-separated list ofSpark property=value pairs.
  • LABEL andLABEL_VALUE: Optional. Comma-separated list oflabel=value pairs.
  • KMS_KEY: Optional. The Cloud Key Management Service key to use for encryption. If a key is not specified, data isencrypted at rest using a Google-owned and Google-managed encryption key.

    Example:projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME

Execute the following command:

Linux, macOS, or Cloud Shell

Note: Ensure you have initialized the Google Cloud CLI with authentication and a project by running eithergcloud init; orgcloud auth login andgcloud config set project.
gclouddataprocbatchessubmitspark\--class=com.google.cloud.dataproc.templates.main.DataProcTemplate\--project="PROJECT_ID"\--region="REGION"\--version="1.2"\--jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH"\--subnet="SUBNET"\--kms-key="KMS_KEY"\--service-account="SERVICE_ACCOUNT"\--properties="PROPERTY=PROPERTY_VALUE"\--labels="LABEL=LABEL_VALUE"\----template=GCSTOJDBC\--templatePropertyproject.id="PROJECT_ID"\--templatePropertylog.level="LOG_LEVEL"\--templatePropertygcs.jdbc.input.location="CLOUD_STORAGE_PATH"\--templatePropertygcs.jdbc.input.format="FORMAT"\--templatePropertygcs.jdbc.output.saveMode="MODE"\--templatePropertygcs.jdbc.output.url="JDBC_CONNECTION_URL"\--templatePropertygcs.jdbc.output.table="JDBC_TABLE"\--templatePropertygcs.jdbc.output.driver="DRIVER"\--templatePropertygcs.jdbc.spark.partitions="NUM_PARTITIONS"\--templatePropertygcs.jdbc.output.batchInsertSize="BATCH_SIZE"

Windows (PowerShell)

Note: Ensure you have initialized the Google Cloud CLI with authentication and a project by running eithergcloud init; orgcloud auth login andgcloud config set project.
gclouddataprocbatchessubmitspark`--class=com.google.cloud.dataproc.templates.main.DataProcTemplate`--project="PROJECT_ID"`--region="REGION"`--version="1.2"`--jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH"`--subnet="SUBNET"`--kms-key="KMS_KEY"`--service-account="SERVICE_ACCOUNT"`--properties="PROPERTY=PROPERTY_VALUE"`--labels="LABEL=LABEL_VALUE"`----template=GCSTOJDBC`--templatePropertyproject.id="PROJECT_ID"`--templatePropertylog.level="LOG_LEVEL"`--templatePropertygcs.jdbc.input.location="CLOUD_STORAGE_PATH"`--templatePropertygcs.jdbc.input.format="FORMAT"`--templatePropertygcs.jdbc.output.saveMode="MODE"`--templatePropertygcs.jdbc.output.url="JDBC_CONNECTION_URL"`--templatePropertygcs.jdbc.output.table="JDBC_TABLE"`--templatePropertygcs.jdbc.output.driver="DRIVER"`--templatePropertygcs.jdbc.spark.partitions="NUM_PARTITIONS"`--templatePropertygcs.jdbc.output.batchInsertSize="BATCH_SIZE"

Windows (cmd.exe)

Note: Ensure you have initialized the Google Cloud CLI with authentication and a project by running eithergcloud init; orgcloud auth login andgcloud config set project.
gclouddataprocbatchessubmitspark^--class=com.google.cloud.dataproc.templates.main.DataProcTemplate^--project="PROJECT_ID"^--region="REGION"^--version="1.2"^--jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH"^--subnet="SUBNET"^--kms-key="KMS_KEY"^--service-account="SERVICE_ACCOUNT"^--properties="PROPERTY=PROPERTY_VALUE"^--labels="LABEL=LABEL_VALUE"^----template=GCSTOJDBC^--templatePropertyproject.id="PROJECT_ID"^--templatePropertylog.level="LOG_LEVEL"^--templatePropertygcs.jdbc.input.location="CLOUD_STORAGE_PATH"^--templatePropertygcs.jdbc.input.format="FORMAT"^--templatePropertygcs.jdbc.output.saveMode="MODE"^--templatePropertygcs.jdbc.output.url="JDBC_CONNECTION_URL"^--templatePropertygcs.jdbc.output.table="JDBC_TABLE"^--templatePropertygcs.jdbc.output.driver="DRIVER"^--templatePropertygcs.jdbc.spark.partitions="NUM_PARTITIONS"^--templatePropertygcs.jdbc.output.batchInsertSize="BATCH_SIZE"

REST

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Required. Your Google Cloud project ID listed in theIAM Settings.
  • REGION: Required.Compute Engine region.
  • SUBNET: Optional. If a subnet is not specified, the subnet in the specified REGION in thedefault network is selected.

    Example:projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME

  • JDBC_CONNECTOR_CLOUD_STORAGE_PATH: Required. The full Cloud Storage path, including the filename, where the JDBC connector jar is stored. You can use the following commands to download JDBC connectors for uploading to Cloud Storage:
    • MySQL:
      wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
    • Postgres SQL:
      wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
    • Microsoft SQL Server:
      wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
    • Oracle:
      wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
  • CLOUD_STORAGE_PATH: Required. Cloud Storage path where input files are stored.

    Example:gs://dataproc-templates/cloud_storage_to_jdbc_input

  • FORMAT: Required. Output data format. Options:avro,parquet,csv ororc. Default:avro.Note: Ifavro, you must add "file:///usr/lib/spark/connector/spark-avro.jar" to thejars gcloud CLI flag or API field.

    Example (thefile:// prefix references a Serverless for Apache Spark jar file):

    --jars=file:///usr/lib/spark/connector/spark-avro.jar, [, ... other jars]
  • MODE: Optional. Write mode for Cloud Storage output. Options:Append,Overwrite,Ignore, orErrorIfExists. Default:ErrorIfExists.
  • The following variables are used to construct the requiredJDBC_CONNECTION_URL:
    • JDBC_HOST
    • JDBC_PORT
    • JDBC_DATABASE, or, for Oracle,JDBC_SERVICE
    • JDBC_USERNAME
    • JDBC_PASSWORD

    Construct theJDBC_CONNECTION_URL using one of the following connector-specific formats:

    • MySQL:
      jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
    • Postgres SQL:
      jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
    • Microsoft SQL Server:
      jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD
    • Oracle:
      jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=
  • JDBC_TABLE: Required. Table name where output will be written.
  • DRIVER: Required. The JDBC driver that is used for the connection:
    • MySQL:
      com.mysql.cj.jdbc.Driver
    • Postgres SQL:
      org.postgresql.Driver
    • Microsoft SQL Server:
      com.microsoft.sqlserver.jdbc.SQLServerDriver
    • Oracle:
      oracle.jdbc.driver.OracleDriver
  • TEMPLATE_VERSION: Required. Specifylatest for the latest template version, or the date of a specific version, for example,2023-03-17_v0.1.0-beta (visitgs://dataproc-templates-binaries or rungcloud storage ls gs://dataproc-templates-binaries to list available template versions).
  • LOG_LEVEL: Optional. Level of logging. Can be one ofALL,DEBUG,ERROR,FATAL,INFO,OFF,TRACE, orWARN. Default:INFO.
  • NUM_PARTITIONS: Optional. The maximum number of partitions that can be used for parallelism of table writes. If specified, this value is used for the JDBC output connection. Defaults to the initial partitions set by Sparkread().
  • BATCH_SIZE: Optional. Number of records to insert per round trip. Default:1000.
  • SERVICE_ACCOUNT: Optional. If not provided, thedefault Compute Engine service account is used.
  • PROPERTY andPROPERTY_VALUE: Optional. Comma-separated list ofSpark property=value pairs.
  • LABEL andLABEL_VALUE: Optional. Comma-separated list oflabel=value pairs.
  • KMS_KEY: Optional. The Cloud Key Management Service key to use for encryption. If a key is not specified, data isencrypted at rest using a Google-owned and Google-managed encryption key.

    Example:projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME

HTTP method and URL:

POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches

Request JSON body:

{  "environmentConfig": {    "executionConfig": {      "subnetworkUri": "SUBNET",      "kmsKey": "KMS_KEY",      "serviceAccount": "SERVICE_ACCOUNT"    }  },  "labels": {    "LABEL": "LABEL_VALUE"  },  "runtimeConfig": {    "version": "1.2",    "properties": {      "PROPERTY": "PROPERTY_VALUE"    }  },  "sparkBatch": {    "mainClass": "com.google.cloud.dataproc.templates.main.DataProcTemplate",    "args": [      "--template=GCSTOJDBC",      "--templateProperty","project.id=PROJECT_ID",      "--templateProperty","log.level=LOG_LEVEL",      "--templateProperty","gcs.jdbc.input.location=CLOUD_STORAGE_PATH",      "--templateProperty","gcs.jdbc.input.format=FORMAT",      "--templateProperty","gcs.jdbc.output.saveMode=MODE",      "--templateProperty","gcs.jdbc.output.url=JDBC_CONNECTION_URL",      "--templateProperty","gcs.jdbc.output.table=JDBC_TABLE",      "--templateProperty","gcs.jdbc.output.driver=DRIVER",      "--templateProperty","gcs.jdbc.spark.partitions=NUM_PARTITIONS",      "--templateProperty","gcs.jdbc.output.batchInsertSize=BATCH_SIZE"    ],    "jarFileUris": [      "gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar", "JDBC_CONNECTOR_CLOUD_STORAGE_PATH"    ]  }}

To send your request, expand one of these options:

curl (Linux, macOS, or Cloud Shell)

Note: The following command assumes that you have logged in to thegcloud CLI with your user account by runninggcloud init orgcloud auth login , or by usingCloud Shell, which automatically logs you into thegcloud CLI . You can check the currently active account by runninggcloud auth list.

Save the request body in a file namedrequest.json, and execute the following command:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches"

PowerShell (Windows)

Note: The following command assumes that you have logged in to thegcloud CLI with your user account by runninggcloud init orgcloud auth login . You can check the currently active account by runninggcloud auth list.

Save the request body in a file namedrequest.json, and execute the following command:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches" | Select-Object -Expand Content

You should receive a JSON response similar to the following:

{  "name": "projects/PROJECT_ID/regions/REGION/operations/OPERATION_ID",  "metadata": {    "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata",    "batch": "projects/PROJECT_ID/locations/REGION/batches/BATCH_ID",    "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583",    "createTime": "2023-02-24T03:31:03.440329Z",    "operationType": "BATCH",    "description": "Batch"  }}

Except as otherwise noted, the content of this page is licensed under theCreative Commons Attribution 4.0 License, and code samples are licensed under theApache 2.0 License. For details, see theGoogle Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2026-02-19 UTC.