Movatterモバイル変換


[0]ホーム

URL:


Google Git
Sign in
chromium /external /github.com /python /cpython /refs/tags/v1.0.1 /. /Lib /poly.py
blob: 3a21904c18d36501c81f1e2f6aa3d7b616d39803 [file] [log] [blame]
# module 'poly' -- Polynomials
# A polynomial is represented by a list of coefficients, e.g.,
# [1, 10, 5] represents 1*x**0 + 10*x**1 + 5*x**2 (or 1 + 10x + 5x**2).
# There is no way to suppress internal zeros; trailing zeros are
# taken out by normalize().
def normalize(p):# Strip unnecessary zero coefficients
n= len(p)
while p:
if p[n-1]:return p[:n]
n= n-1
return[]
def plus(a, b):
if len(a)< len(b): a, b= b, a# make sure a is the longest
res= a[:]# make a copy
for iin range(len(b)):
res[i]= res[i]+ b[i]
return normalize(res)
def minus(a, b):
if len(a)< len(b): a, b= b, a# make sure a is the longest
res= a[:]# make a copy
for iin range(len(b)):
res[i]= res[i]- b[i]
return normalize(res)
def one(power, coeff):# Representation of coeff * x**power
res=[]
for iin range(power): res.append(0)
return res+[coeff]
def times(a, b):
res=[]
for iin range(len(a)):
for jin range(len(b)):
res= plus(res, one(i+j, a[i]*b[j]))
return res
def power(a, n):# Raise polynomial a to the positive integral power n
if n==0:return[1]
if n==1:return a
if n/2*2== n:
b= power(a, n/2)
return times(b, b)
return times(power(a, n-1), a)
def der(a):# First derivative
res= a[1:]
for iin range(len(res)):
res[i]= res[i]*(i+1)
return res
# Computing a primitive function would require rational arithmetic...

[8]ページ先頭

©2009-2025 Movatter.jp