Movatterモバイル変換


[0]ホーム

URL:


Google Git
Sign in
chromium /chromium /src /refs/heads/main /. /base /sync_socket_win.cc
blob: 77bc8e15b180532b4d20cd33275155bd9d41a7d9 [file] [log] [blame] [edit]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include"base/sync_socket.h"
#include<limits.h>
#include<stddef.h>
#include<utility>
#include"base/check.h"
#include"base/compiler_specific.h"
#include"base/containers/span.h"
#include"base/logging.h"
#include"base/notimplemented.h"
#include"base/rand_util.h"
#include"base/threading/scoped_blocking_call.h"
#include"base/win/scoped_handle.h"
namespace base{
using win::ScopedHandle;
namespace{
// IMPORTANT: do not change how this name is generated because it will break
// in sandboxed scenarios as we might have by-name policies that allow pipe
// creation. Also keep the secure random number generation.
constwchar_t kPipeNameFormat[]= L"\\\\.\\pipe\\chrome.sync.%u.%u.%lu";
constsize_t kPipePathMax= std::size(kPipeNameFormat)+(3*10)+1;
// To avoid users sending negative message lengths to Send/Receive
// we clamp message lengths, which are size_t, to no more than INT_MAX.
constsize_t kMaxMessageLength=static_cast<size_t>(INT_MAX);
constint kOutBufferSize=4096;
constint kInBufferSize=4096;
constint kDefaultTimeoutMilliSeconds=1000;
boolCreatePairImpl(ScopedHandle* socket_a,
ScopedHandle* socket_b,
bool overlapped){
DCHECK_NE(socket_a, socket_b);
DCHECK(!socket_a->is_valid());
DCHECK(!socket_b->is_valid());
wchar_t name[kPipePathMax];
ScopedHandle handle_a;
DWORD flags= PIPE_ACCESS_DUPLEX| FILE_FLAG_FIRST_PIPE_INSTANCE;
if(overlapped){
flags|= FILE_FLAG_OVERLAPPED;
}
do{
unsignedlong rnd_name;
RandBytes(byte_span_from_ref(rnd_name));
UNSAFE_TODO(swprintf(name, kPipePathMax, kPipeNameFormat,
GetCurrentProcessId(),GetCurrentThreadId(),
rnd_name));
handle_a.Set(CreateNamedPipeW(
name, flags, PIPE_TYPE_BYTE| PIPE_READMODE_BYTE,1, kOutBufferSize,
kInBufferSize, kDefaultTimeoutMilliSeconds, NULL));
}while(!handle_a.is_valid()&&(GetLastError()== ERROR_PIPE_BUSY));
CHECK(handle_a.is_valid());
// The SECURITY_ANONYMOUS flag means that the server side (handle_a) cannot
// impersonate the client (handle_b). This allows us not to care which side
// ends up in which side of a privilege boundary.
flags= SECURITY_SQOS_PRESENT| SECURITY_ANONYMOUS;
if(overlapped){
flags|= FILE_FLAG_OVERLAPPED;
}
ScopedHandle handle_b(CreateFileW(name, GENERIC_READ| GENERIC_WRITE,
0,// no sharing.
NULL,// default security attributes.
OPEN_EXISTING,// opens existing pipe.
flags,
NULL));// no template file.
if(!handle_b.is_valid()){
DPLOG(ERROR)<<"CreateFileW failed";
returnfalse;
}
if(!ConnectNamedPipe(handle_a.get(), NULL)){
DWORD error=GetLastError();
if(error!= ERROR_PIPE_CONNECTED){
DPLOG(ERROR)<<"ConnectNamedPipe failed";
returnfalse;
}
}
*socket_a= std::move(handle_a);
*socket_b= std::move(handle_b);
returntrue;
}
// Inline helper to avoid having the cast everywhere.
DWORDGetNextChunkSize(size_t current_pos,size_t max_size){
// The following statement is for 64 bit portability.
returnstatic_cast<DWORD>(((max_size- current_pos)<= UINT_MAX)
?(max_size- current_pos)
: UINT_MAX);
}
// Template function that supports calling ReadFile or WriteFile in an
// overlapped fashion and waits for IO completion. The function also waits
// on an event that can be used to cancel the operation. If the operation
// is cancelled, the function returns and closes the relevant socket object.
template<typenameDataType,typenameFunction>
size_tCancelableFileOperation(Function operation,
HANDLE file,
span<DataType> buffer,
WaitableEvent* io_event,
WaitableEvent* cancel_event,
CancelableSyncSocket* socket,
DWORD timeout_in_ms){
ScopedBlockingCall scoped_blocking_call(FROM_HERE,BlockingType::MAY_BLOCK);
// The buffer must be byte size or the length check won't make much sense.
static_assert(sizeof(DataType)==1u,"incorrect buffer type");
CHECK(!buffer.empty());
CHECK_LE(buffer.size(), kMaxMessageLength);
CHECK_NE(file,SyncSocket::kInvalidHandle);
// Track the finish time so we can calculate the timeout as data is read.
TimeTicks current_time, finish_time;
if(timeout_in_ms!= INFINITE){
current_time=TimeTicks::Now();
finish_time= current_time+ base::Milliseconds(timeout_in_ms);
}
size_t count=0;
do{
// The OVERLAPPED structure will be modified by ReadFile or WriteFile.
OVERLAPPED ol={0};
ol.hEvent= io_event->handle();
const DWORD chunk_size=GetNextChunkSize(count, buffer.size());
// This is either the ReadFile or WriteFile call depending on whether
// we're receiving or sending data.
DWORD len=0;
auto operation_buffer= buffer.subspan(count, chunk_size);
// SAFETY: The below static_cast is in range for DWORD because
// `operation_buffer` is constructed with a DWORD length above from
// `chunk_size`.
const BOOL operation_ok=
operation(file, operation_buffer.data(),
static_cast<DWORD>(operation_buffer.size()),&len,&ol);
if(!operation_ok){
if(::GetLastError()== ERROR_IO_PENDING){
HANDLE events[]={io_event->handle(), cancel_event->handle()};
const DWORD wait_result=WaitForMultipleObjects(
std::size(events), events, FALSE,
timeout_in_ms== INFINITE
? timeout_in_ms
:static_cast<DWORD>(
(finish_time- current_time).InMilliseconds()));
if(wait_result!= WAIT_OBJECT_0+0){
// CancelIo() doesn't synchronously cancel outstanding IO, only marks
// outstanding IO for cancellation. We must call GetOverlappedResult()
// below to ensure in flight writes complete before returning.
CancelIo(file);
}
// We set the |bWait| parameter to TRUE for GetOverlappedResult() to
// ensure writes are complete before returning.
if(!GetOverlappedResult(file,&ol,&len, TRUE)){
len=0;
}
if(wait_result== WAIT_OBJECT_0+1){
DVLOG(1)<<"Shutdown was signaled. Closing socket.";
socket->Close();
return count;
}
// Timeouts will be handled by the while() condition below since
// GetOverlappedResult() may complete successfully after CancelIo().
DCHECK(wait_result== WAIT_OBJECT_0+0|| wait_result== WAIT_TIMEOUT);
}else{
break;
}
}
count+= len;
// Quit the operation if we can't write/read anymore.
if(len!= chunk_size){
break;
}
// Since TimeTicks::Now() is expensive, only bother updating the time if we
// have more work to do.
if(timeout_in_ms!= INFINITE&& count< buffer.size()){
current_time= base::TimeTicks::Now();
}
}while(count< buffer.size()&&
(timeout_in_ms== INFINITE|| current_time< finish_time));
return count;
}
}// namespace
// static
boolSyncSocket::CreatePair(SyncSocket* socket_a,SyncSocket* socket_b){
returnCreatePairImpl(&socket_a->handle_,&socket_b->handle_,false);
}
voidSyncSocket::Close(){
handle_.Close();
}
size_tSyncSocket::Send(span<constuint8_t> data){
ScopedBlockingCall scoped_blocking_call(FROM_HERE,BlockingType::MAY_BLOCK);
CHECK_LE(data.size(), kMaxMessageLength);
DCHECK(IsValid());
size_t count=0;
while(count< data.size()){
DWORD len;
const DWORD chunk_size=GetNextChunkSize(count, data.size());
auto data_chunk= data.subspan(count, chunk_size);
// SAFETY: The below static_cast is in range for DWORD because `data_chunk`
// is constructed with a DWORD length above from `chunk_size`.
if(::WriteFile(handle(), data_chunk.data(),
static_cast<DWORD>(data_chunk.size()),&len,
NULL)== FALSE){
return count;
}
count+= len;
}
return count;
}
size_tSyncSocket::ReceiveWithTimeout(span<uint8_t> buffer,TimeDelta timeout){
NOTIMPLEMENTED();
return0;
}
size_tSyncSocket::Receive(span<uint8_t> buffer){
ScopedBlockingCall scoped_blocking_call(FROM_HERE,BlockingType::MAY_BLOCK);
CHECK_LE(buffer.size(), kMaxMessageLength);
DCHECK(IsValid());
size_t count=0;
while(count< buffer.size()){
DWORD len;
const DWORD chunk_size=GetNextChunkSize(count, buffer.size());
auto data_chunk= buffer.subspan(count, chunk_size);
// SAFETY: The below static_cast is in range for DWORD because `data_chunk`
// is constructed with a DWORD length above from `chunk_size`.
if(::ReadFile(handle(), data_chunk.data(),
static_cast<DWORD>(data_chunk.size()),&len,
NULL)== FALSE){
return count;
}
count+= len;
}
return count;
}
size_tSyncSocket::Peek(){
DWORD available=0;
PeekNamedPipe(handle(), NULL,0, NULL,&available, NULL);
return available;
}
boolSyncSocket::IsValid()const{
return handle_.is_valid();
}
SyncSocket::HandleSyncSocket::handle()const{
return handle_.get();
}
SyncSocket::HandleSyncSocket::Release(){
return handle_.release();
}
boolCancelableSyncSocket::Shutdown(){
// This doesn't shut down the pipe immediately, but subsequent Receive or Send
// methods will fail straight away.
shutdown_event_.Signal();
returntrue;
}
voidCancelableSyncSocket::Close(){
SyncSocket::Close();
shutdown_event_.Reset();
}
size_tCancelableSyncSocket::Send(span<constuint8_t> data){
staticconst DWORD kWaitTimeOutInMs=500;
returnCancelableFileOperation(&::WriteFile, handle(), data,&file_operation_,
&shutdown_event_,this, kWaitTimeOutInMs);
}
size_tCancelableSyncSocket::Receive(span<uint8_t> buffer){
returnCancelableFileOperation(&::ReadFile, handle(), buffer,
&file_operation_,&shutdown_event_,this,
INFINITE);
}
size_tCancelableSyncSocket::ReceiveWithTimeout(span<uint8_t> buffer,
TimeDelta timeout){
returnCancelableFileOperation(&::ReadFile, handle(), buffer,
&file_operation_,&shutdown_event_,this,
static_cast<DWORD>(timeout.InMilliseconds()));
}
// static
boolCancelableSyncSocket::CreatePair(CancelableSyncSocket* socket_a,
CancelableSyncSocket* socket_b){
returnCreatePairImpl(&socket_a->handle_,&socket_b->handle_,true);
}
}// namespace base

[8]ページ先頭

©2009-2025 Movatter.jp