Movatterモバイル変換


[0]ホーム

URL:


Google Git
Sign in
chromium /chromium /src /refs/heads/main /. /base /rand_util_unittest.cc
blob: 8b922cf799eb2ac73cd3529811821a8685114a0b [file] [log] [blame] [edit]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include"base/rand_util.h"
#include<stddef.h>
#include<stdint.h>
#include<algorithm>
#include<cmath>
#include<limits>
#include<memory>
#include<vector>
#include"base/containers/span.h"
#include"base/logging.h"
#include"base/time/time.h"
#include"testing/gtest/include/gtest/gtest.h"
namespace base{
namespace{
constexprint kIntMin= std::numeric_limits<int>::min();
constexprint kIntMax= std::numeric_limits<int>::max();
}// namespace
TEST(RandUtilTest,RandInt){
EXPECT_EQ(RandInt(0,0),0);
EXPECT_EQ(RandInt(kIntMin, kIntMin), kIntMin);
EXPECT_EQ(RandInt(kIntMax, kIntMax), kIntMax);
// Check that the DCHECKS in RandInt() don't fire due to internal overflow.
// There was a 50% chance of that happening, so calling it 40 times means
// the chances of this passing by accident are tiny (9e-13).
for(int i=0; i<40;++i){
RandInt(kIntMin, kIntMax);
}
}
TEST(RandUtilTest,RandDouble){
// Force 64-bit precision, making sure we're not in a 80-bit FPU register.
volatiledouble number=RandDouble();
EXPECT_LT(number,1.0);
EXPECT_GE(number,0.0);
}
TEST(RandUtilTest,RandFloat){
// Force 32-bit precision, making sure we're not in an 80-bit FPU register.
volatilefloat number=RandFloat();
EXPECT_LT(number,1.0f);
EXPECT_GE(number,0.0f);
}
TEST(RandUtilTest,RandBool){
// This test should finish extremely quickly unless `RandBool()` can only give
// one result value.
for(bool seen_false=false, seen_true=false;!seen_false||!seen_true;){
(RandBool()? seen_true: seen_false)=true;
}
}
TEST(RandUtilTest,RandTimeDelta){
{
constauto delta=RandTimeDelta(-Seconds(2),-Seconds(1));
EXPECT_GE(delta,-Seconds(2));
EXPECT_LT(delta,-Seconds(1));
}
{
constauto delta=RandTimeDelta(-Seconds(2),Seconds(2));
EXPECT_GE(delta,-Seconds(2));
EXPECT_LT(delta,Seconds(2));
}
{
constauto delta=RandTimeDelta(Seconds(1),Seconds(2));
EXPECT_GE(delta,Seconds(1));
EXPECT_LT(delta,Seconds(2));
}
}
TEST(RandUtilTest,RandTimeDeltaUpTo){
constauto delta=RandTimeDeltaUpTo(Seconds(2));
EXPECT_FALSE(delta.is_negative());
EXPECT_LT(delta,Seconds(2));
}
TEST(RandUtilTest,RandomizeByPercentage){
EXPECT_EQ(0,RandomizeByPercentage(0,100));
EXPECT_EQ(100,RandomizeByPercentage(100,0));
// Check that 10 +/- 200% will eventually produce values in each range
// [-10, 0), [0, 10), [10, 20), [20, 30).
for(bool a=false, b=false, c=false, d=false;!a||!b||!c||!d;){
constint r=RandomizeByPercentage(10,200);
EXPECT_GE(r,-10);
EXPECT_LT(r,30);
a|=(r<0);
b|=(r>=0&& r<10);
c|=(r>=10&& r<20);
d|=(r>=20);
}
}
TEST(RandUtilTest,BitsToOpenEndedUnitInterval){
// Force 64-bit precision, making sure we're not in an 80-bit FPU register.
volatiledouble all_zeros=BitsToOpenEndedUnitInterval(0x0);
EXPECT_EQ(0.0, all_zeros);
// Force 64-bit precision, making sure we're not in an 80-bit FPU register.
volatiledouble smallest_nonzero=BitsToOpenEndedUnitInterval(0x1);
EXPECT_LT(0.0, smallest_nonzero);
for(uint64_t i=0x2; i<0x10;++i){
// Force 64-bit precision, making sure we're not in an 80-bit FPU register.
volatiledouble number=BitsToOpenEndedUnitInterval(i);
EXPECT_EQ(i* smallest_nonzero, number);
}
// Force 64-bit precision, making sure we're not in an 80-bit FPU register.
volatiledouble all_ones=BitsToOpenEndedUnitInterval(UINT64_MAX);
EXPECT_GT(1.0, all_ones);
}
TEST(RandUtilTest,BitsToOpenEndedUnitIntervalF){
// Force 32-bit precision, making sure we're not in an 80-bit FPU register.
volatilefloat all_zeros=BitsToOpenEndedUnitIntervalF(0x0);
EXPECT_EQ(0.f, all_zeros);
// Force 32-bit precision, making sure we're not in an 80-bit FPU register.
volatilefloat smallest_nonzero=BitsToOpenEndedUnitIntervalF(0x1);
EXPECT_LT(0.f, smallest_nonzero);
for(uint64_t i=0x2; i<0x10;++i){
// Force 32-bit precision, making sure we're not in an 80-bit FPU register.
volatilefloat number=BitsToOpenEndedUnitIntervalF(i);
EXPECT_EQ(i* smallest_nonzero, number);
}
// Force 32-bit precision, making sure we're not in an 80-bit FPU register.
volatilefloat all_ones=BitsToOpenEndedUnitIntervalF(UINT64_MAX);
EXPECT_GT(1.f, all_ones);
}
TEST(RandUtilTest,RandBytes){
constsize_t buffer_size=50;
uint8_t buffer[buffer_size];
memset(buffer,0, buffer_size);
RandBytes(buffer);
std::sort(buffer, buffer+ buffer_size);
// Probability of occurrence of less than 25 unique bytes in 50 random bytes
// is below 10^-25.
EXPECT_GT(std::unique(buffer, buffer+ buffer_size)- buffer,25);
}
// Verify that calling RandBytes with an empty buffer doesn't fail.
TEST(RandUtilTest,RandBytes0){
RandBytes(span<uint8_t>());
}
TEST(RandUtilTest,RandBytesAsVector){
std::vector<uint8_t> random_vec=RandBytesAsVector(0);
EXPECT_TRUE(random_vec.empty());
random_vec=RandBytesAsVector(1);
EXPECT_EQ(1U, random_vec.size());
random_vec=RandBytesAsVector(145);
EXPECT_EQ(145U, random_vec.size());
char accumulator=0;
for(auto i: random_vec){
accumulator|= i;
}
// In theory this test can fail, but it won't before the universe dies of
// heat death.
EXPECT_NE(0, accumulator);
}
TEST(RandUtilTest,RandBytesAsString){
std::string random_string=RandBytesAsString(1);
EXPECT_EQ(1U, random_string.size());
random_string=RandBytesAsString(145);
EXPECT_EQ(145U, random_string.size());
char accumulator=0;
for(auto i: random_string){
accumulator|= i;
}
// In theory this test can fail, but it won't before the universe dies of
// heat death.
EXPECT_NE(0, accumulator);
}
// Make sure that it is still appropriate to use RandGenerator in conjunction
// with std::random_shuffle().
TEST(RandUtilTest,RandGeneratorForRandomShuffle){
EXPECT_EQ(RandGenerator(1),0U);
EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
std::numeric_limits<int64_t>::max());
}
TEST(RandUtilTest,RandGeneratorIsUniform){
// Verify that RandGenerator has a uniform distribution. This is a
// regression test that consistently failed when RandGenerator was
// implemented this way:
//
// return RandUint64() % max;
//
// A degenerate case for such an implementation is e.g. a top of
// range that is 2/3rds of the way to MAX_UINT64, in which case the
// bottom half of the range would be twice as likely to occur as the
// top half. A bit of calculus care of jar@ shows that the largest
// measurable delta is when the top of the range is 3/4ths of the
// way, so that's what we use in the test.
constexpruint64_t kTopOfRange=
(std::numeric_limits<uint64_t>::max()/4ULL)*3ULL;
constexprdouble kExpectedAverage=static_cast<double>(kTopOfRange/2);
constexprdouble kAllowedVariance= kExpectedAverage/50.0;// +/- 2%
constexprint kMinAttempts=1000;
constexprint kMaxAttempts=1000000;
double cumulative_average=0.0;
int count=0;
while(count< kMaxAttempts){
uint64_t value=RandGenerator(kTopOfRange);
cumulative_average=(count* cumulative_average+ value)/(count+1);
// Don't quit too quickly for things to start converging, or we may have
// a false positive.
if(count> kMinAttempts&&
kExpectedAverage- kAllowedVariance< cumulative_average&&
cumulative_average< kExpectedAverage+ kAllowedVariance){
break;
}
++count;
}
ASSERT_LT(count, kMaxAttempts)<<"Expected average was "<< kExpectedAverage
<<", average ended at "<< cumulative_average;
}
TEST(RandUtilTest,RandUint64ProducesBothValuesOfAllBits){
// This tests to see that our underlying random generator is good
// enough, for some value of good enough.
uint64_t kAllZeros=0ULL;
uint64_t kAllOnes=~kAllZeros;
uint64_t found_ones= kAllZeros;
uint64_t found_zeros= kAllOnes;
for(size_t i=0; i<1000;++i){
uint64_t value=RandUint64();
found_ones|= value;
found_zeros&= value;
if(found_zeros== kAllZeros&& found_ones== kAllOnes){
return;
}
}
FAIL()<<"Didn't achieve all bit values in maximum number of tries.";
}
TEST(RandUtilTest,RandBytesLonger){
// Fuchsia can only retrieve 256 bytes of entropy at a time, so make sure we
// handle longer requests than that.
std::string random_string0=RandBytesAsString(255);
EXPECT_EQ(255u, random_string0.size());
std::string random_string1=RandBytesAsString(1023);
EXPECT_EQ(1023u, random_string1.size());
std::string random_string2=RandBytesAsString(4097);
EXPECT_EQ(4097u, random_string2.size());
}
// Benchmark test for RandBytes(). Disabled since it's intentionally slow and
// does not test anything that isn't already tested by the existing RandBytes()
// tests.
TEST(RandUtilTest, DISABLED_RandBytesPerf){
// Benchmark the performance of |kTestIterations| of RandBytes() using a
// buffer size of |kTestBufferSize|.
constint kTestIterations=10;
constsize_t kTestBufferSize=1*1024*1024;
std::array<uint8_t, kTestBufferSize> buffer;
constTimeTicks now=TimeTicks::Now();
for(int i=0; i< kTestIterations;++i){
RandBytes(buffer);
}
constTimeTicks end=TimeTicks::Now();
LOG(INFO)<<"RandBytes("<< kTestBufferSize
<<") took: "<<(end- now).InMicroseconds()<<"µs";
}
TEST(RandUtilTest,InsecureRandomGeneratorProducesBothValuesOfAllBits){
// This tests to see that our underlying random generator is good
// enough, for some value of good enough.
uint64_t kAllZeros=0ULL;
uint64_t kAllOnes=~kAllZeros;
uint64_t found_ones= kAllZeros;
uint64_t found_zeros= kAllOnes;
InsecureRandomGenerator generator;
for(size_t i=0; i<1000;++i){
uint64_t value= generator.RandUint64();
found_ones|= value;
found_zeros&= value;
if(found_zeros== kAllZeros&& found_ones== kAllOnes){
return;
}
}
FAIL()<<"Didn't achieve all bit values in maximum number of tries.";
}
namespace{
constexprdouble kXp1Percent=-2.33;
constexprdouble kXp99Percent=2.33;
doubleChiSquaredCriticalValue(double nu,double x_p){
// From "The Art Of Computer Programming" (TAOCP), Volume 2, Section 3.3.1,
// Table 1. This is the asymptotic value for nu > 30, up to O(1 / sqrt(nu)).
return nu+ sqrt(2.* nu)* x_p+2./3.*(x_p* x_p)-2./3.;
}
intExtractBits(uint64_t value,int from_bit,int num_bits){
return(value>> from_bit)&((1<< num_bits)-1);
}
// Performs a Chi-Squared test on a subset of |num_bits| extracted starting from
// |from_bit| in the generated value.
//
// See TAOCP, Volume 2, Section 3.3.1, and
// https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test for details.
//
// This is only one of the many, many random number generator test we could do,
// but they are cumbersome, as they are typically very slow, and expected to
// fail from time to time, due to their probabilistic nature.
//
// The generator we use has however been vetted with the BigCrush test suite
// from Marsaglia, so this should suffice as a smoke test that our
// implementation is wrong.
boolChiSquaredTest(InsecureRandomGenerator& gen,
size_t n,
int from_bit,
int num_bits){
constint range=1<< num_bits;
CHECK_EQ(static_cast<int>(n% range),0)<<"Makes computations simpler";
std::vector<size_t> samples(range,0);
// Count how many samples pf each value are found. All buckets should be
// almost equal if the generator is suitably uniformly random.
for(size_t i=0; i< n; i++){
int sample=ExtractBits(gen.RandUint64(), from_bit, num_bits);
samples[sample]+=1;
}
// Compute the Chi-Squared statistic, which is:
// \Sum_{k=0}^{range-1} \frac{(count - expected)^2}{expected}
double chi_squared=0.;
double expected_count= n/ range;
for(size_t sample_count: samples){
double deviation= sample_count- expected_count;
chi_squared+=(deviation* deviation)/ expected_count;
}
// The generator should produce numbers that are not too far of (chi_squared
// lower than a given quantile), but not too close to the ideal distribution
// either (chi_squared is too low).
//
// See The Art Of Computer Programming, Volume 2, Section 3.3.1 for details.
return chi_squared>ChiSquaredCriticalValue(range-1, kXp1Percent)&&
chi_squared<ChiSquaredCriticalValue(range-1, kXp99Percent);
}
}// namespace
TEST(RandUtilTest,InsecureRandomGeneratorChiSquared){
constexprint kIterations=50;
// Specifically test the low bits, which are usually weaker in random number
// generators. We don't use them for the 32 bit number generation, but let's
// make sure they are still suitable.
for(int start_bit:{1,2,3,8,12,20,32,48,54}){
int pass_count=0;
for(int i=0; i< kIterations; i++){
size_t samples=1<<16;
InsecureRandomGenerator gen;
// Fix the seed to make the test non-flaky.
gen.ReseedForTesting(kIterations+1);
bool pass=ChiSquaredTest(gen, samples, start_bit,8);
pass_count+= pass;
}
// We exclude 1% on each side, so we expect 98% of tests to pass, meaning 98
// * kIterations / 100. However this is asymptotic, so add a bit of leeway.
int expected_pass_count=(kIterations*98)/100;
EXPECT_GE(pass_count, expected_pass_count-((kIterations*2)/100))
<<"For start_bit = "<< start_bit;
}
}
TEST(RandUtilTest,InsecureRandomGeneratorRandDouble){
InsecureRandomGenerator gen;
for(int i=0; i<1000; i++){
volatiledouble x= gen.RandDouble();
EXPECT_GE(x,0.);
EXPECT_LT(x,1.);
}
}
TEST(RandUtilTest,MetricsSubSampler){
MetricsSubSampler sub_sampler;
int true_count=0;
int false_count=0;
for(int i=0; i<1000;++i){
if(sub_sampler.ShouldSample(0.5)){
++true_count;
}else{
++false_count;
}
}
// Validate that during normal operation MetricsSubSampler::ShouldSample()
// does not always give the same result. It's technically possible to fail
// this test during normal operation but if the sampling is realistic it
// should happen about once every 2^999 times (the likelihood of the [1,999]
// results being the same as [0], which can be either). This should not make
// this test flaky in the eyes of automated testing.
EXPECT_GT(true_count,0);
EXPECT_GT(false_count,0);
}
TEST(RandUtilTest,MetricsSubSamplerTestingSupport){
MetricsSubSampler sub_sampler;
// ScopedAlwaysSampleForTesting makes ShouldSample() return true with
// any probability.
{
MetricsSubSampler::ScopedAlwaysSampleForTesting always_sample;
for(int i=0; i<100;++i){
EXPECT_TRUE(sub_sampler.ShouldSample(0));
EXPECT_TRUE(sub_sampler.ShouldSample(0.5));
EXPECT_TRUE(sub_sampler.ShouldSample(1));
}
}
// ScopedNeverSampleForTesting makes ShouldSample() return true with
// any probability.
{
MetricsSubSampler::ScopedNeverSampleForTesting always_sample;
for(int i=0; i<100;++i){
EXPECT_FALSE(sub_sampler.ShouldSample(0));
EXPECT_FALSE(sub_sampler.ShouldSample(0.5));
EXPECT_FALSE(sub_sampler.ShouldSample(1));
}
}
}
}// namespace base

[8]ページ先頭

©2009-2025 Movatter.jp