| // Copyright 2011 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifdef UNSAFE_BUFFERS_BUILD |
| // TODO(crbug.com/40284755): Remove this and spanify to fix the errors. |
| #pragma allow_unsafe_buffers |
| #endif |
| |
| #include"base/rand_util.h" |
| |
| #include<stddef.h> |
| #include<stdint.h> |
| |
| #include<algorithm> |
| #include<cmath> |
| #include<limits> |
| #include<memory> |
| #include<vector> |
| |
| #include"base/containers/span.h" |
| #include"base/logging.h" |
| #include"base/time/time.h" |
| #include"testing/gtest/include/gtest/gtest.h" |
| |
| namespace base{ |
| |
| namespace{ |
| |
| constexprint kIntMin= std::numeric_limits<int>::min(); |
| constexprint kIntMax= std::numeric_limits<int>::max(); |
| |
| }// namespace |
| |
| TEST(RandUtilTest,RandInt){ |
| EXPECT_EQ(RandInt(0,0),0); |
| EXPECT_EQ(RandInt(kIntMin, kIntMin), kIntMin); |
| EXPECT_EQ(RandInt(kIntMax, kIntMax), kIntMax); |
| |
| // Check that the DCHECKS in RandInt() don't fire due to internal overflow. |
| // There was a 50% chance of that happening, so calling it 40 times means |
| // the chances of this passing by accident are tiny (9e-13). |
| for(int i=0; i<40;++i){ |
| RandInt(kIntMin, kIntMax); |
| } |
| } |
| |
| TEST(RandUtilTest,RandDouble){ |
| // Force 64-bit precision, making sure we're not in a 80-bit FPU register. |
| volatiledouble number=RandDouble(); |
| EXPECT_LT(number,1.0); |
| EXPECT_GE(number,0.0); |
| } |
| |
| TEST(RandUtilTest,RandFloat){ |
| // Force 32-bit precision, making sure we're not in an 80-bit FPU register. |
| volatilefloat number=RandFloat(); |
| EXPECT_LT(number,1.0f); |
| EXPECT_GE(number,0.0f); |
| } |
| |
| TEST(RandUtilTest,RandBool){ |
| // This test should finish extremely quickly unless `RandBool()` can only give |
| // one result value. |
| for(bool seen_false=false, seen_true=false;!seen_false||!seen_true;){ |
| (RandBool()? seen_true: seen_false)=true; |
| } |
| } |
| |
| TEST(RandUtilTest,RandTimeDelta){ |
| { |
| constauto delta=RandTimeDelta(-Seconds(2),-Seconds(1)); |
| EXPECT_GE(delta,-Seconds(2)); |
| EXPECT_LT(delta,-Seconds(1)); |
| } |
| |
| { |
| constauto delta=RandTimeDelta(-Seconds(2),Seconds(2)); |
| EXPECT_GE(delta,-Seconds(2)); |
| EXPECT_LT(delta,Seconds(2)); |
| } |
| |
| { |
| constauto delta=RandTimeDelta(Seconds(1),Seconds(2)); |
| EXPECT_GE(delta,Seconds(1)); |
| EXPECT_LT(delta,Seconds(2)); |
| } |
| } |
| |
| TEST(RandUtilTest,RandTimeDeltaUpTo){ |
| constauto delta=RandTimeDeltaUpTo(Seconds(2)); |
| EXPECT_FALSE(delta.is_negative()); |
| EXPECT_LT(delta,Seconds(2)); |
| } |
| |
| TEST(RandUtilTest,RandomizeByPercentage){ |
| EXPECT_EQ(0,RandomizeByPercentage(0,100)); |
| EXPECT_EQ(100,RandomizeByPercentage(100,0)); |
| |
| // Check that 10 +/- 200% will eventually produce values in each range |
| // [-10, 0), [0, 10), [10, 20), [20, 30). |
| for(bool a=false, b=false, c=false, d=false;!a||!b||!c||!d;){ |
| constint r=RandomizeByPercentage(10,200); |
| EXPECT_GE(r,-10); |
| EXPECT_LT(r,30); |
| a|=(r<0); |
| b|=(r>=0&& r<10); |
| c|=(r>=10&& r<20); |
| d|=(r>=20); |
| } |
| } |
| |
| TEST(RandUtilTest,BitsToOpenEndedUnitInterval){ |
| // Force 64-bit precision, making sure we're not in an 80-bit FPU register. |
| volatiledouble all_zeros=BitsToOpenEndedUnitInterval(0x0); |
| EXPECT_EQ(0.0, all_zeros); |
| |
| // Force 64-bit precision, making sure we're not in an 80-bit FPU register. |
| volatiledouble smallest_nonzero=BitsToOpenEndedUnitInterval(0x1); |
| EXPECT_LT(0.0, smallest_nonzero); |
| |
| for(uint64_t i=0x2; i<0x10;++i){ |
| // Force 64-bit precision, making sure we're not in an 80-bit FPU register. |
| volatiledouble number=BitsToOpenEndedUnitInterval(i); |
| EXPECT_EQ(i* smallest_nonzero, number); |
| } |
| |
| // Force 64-bit precision, making sure we're not in an 80-bit FPU register. |
| volatiledouble all_ones=BitsToOpenEndedUnitInterval(UINT64_MAX); |
| EXPECT_GT(1.0, all_ones); |
| } |
| |
| TEST(RandUtilTest,BitsToOpenEndedUnitIntervalF){ |
| // Force 32-bit precision, making sure we're not in an 80-bit FPU register. |
| volatilefloat all_zeros=BitsToOpenEndedUnitIntervalF(0x0); |
| EXPECT_EQ(0.f, all_zeros); |
| |
| // Force 32-bit precision, making sure we're not in an 80-bit FPU register. |
| volatilefloat smallest_nonzero=BitsToOpenEndedUnitIntervalF(0x1); |
| EXPECT_LT(0.f, smallest_nonzero); |
| |
| for(uint64_t i=0x2; i<0x10;++i){ |
| // Force 32-bit precision, making sure we're not in an 80-bit FPU register. |
| volatilefloat number=BitsToOpenEndedUnitIntervalF(i); |
| EXPECT_EQ(i* smallest_nonzero, number); |
| } |
| |
| // Force 32-bit precision, making sure we're not in an 80-bit FPU register. |
| volatilefloat all_ones=BitsToOpenEndedUnitIntervalF(UINT64_MAX); |
| EXPECT_GT(1.f, all_ones); |
| } |
| |
| TEST(RandUtilTest,RandBytes){ |
| constsize_t buffer_size=50; |
| uint8_t buffer[buffer_size]; |
| memset(buffer,0, buffer_size); |
| RandBytes(buffer); |
| std::sort(buffer, buffer+ buffer_size); |
| // Probability of occurrence of less than 25 unique bytes in 50 random bytes |
| // is below 10^-25. |
| EXPECT_GT(std::unique(buffer, buffer+ buffer_size)- buffer,25); |
| } |
| |
| // Verify that calling RandBytes with an empty buffer doesn't fail. |
| TEST(RandUtilTest,RandBytes0){ |
| RandBytes(span<uint8_t>()); |
| } |
| |
| TEST(RandUtilTest,RandBytesAsVector){ |
| std::vector<uint8_t> random_vec=RandBytesAsVector(0); |
| EXPECT_TRUE(random_vec.empty()); |
| random_vec=RandBytesAsVector(1); |
| EXPECT_EQ(1U, random_vec.size()); |
| random_vec=RandBytesAsVector(145); |
| EXPECT_EQ(145U, random_vec.size()); |
| char accumulator=0; |
| for(auto i: random_vec){ |
| accumulator|= i; |
| } |
| // In theory this test can fail, but it won't before the universe dies of |
| // heat death. |
| EXPECT_NE(0, accumulator); |
| } |
| |
| TEST(RandUtilTest,RandBytesAsString){ |
| std::string random_string=RandBytesAsString(1); |
| EXPECT_EQ(1U, random_string.size()); |
| random_string=RandBytesAsString(145); |
| EXPECT_EQ(145U, random_string.size()); |
| char accumulator=0; |
| for(auto i: random_string){ |
| accumulator|= i; |
| } |
| // In theory this test can fail, but it won't before the universe dies of |
| // heat death. |
| EXPECT_NE(0, accumulator); |
| } |
| |
| // Make sure that it is still appropriate to use RandGenerator in conjunction |
| // with std::random_shuffle(). |
| TEST(RandUtilTest,RandGeneratorForRandomShuffle){ |
| EXPECT_EQ(RandGenerator(1),0U); |
| EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(), |
| std::numeric_limits<int64_t>::max()); |
| } |
| |
| TEST(RandUtilTest,RandGeneratorIsUniform){ |
| // Verify that RandGenerator has a uniform distribution. This is a |
| // regression test that consistently failed when RandGenerator was |
| // implemented this way: |
| // |
| // return RandUint64() % max; |
| // |
| // A degenerate case for such an implementation is e.g. a top of |
| // range that is 2/3rds of the way to MAX_UINT64, in which case the |
| // bottom half of the range would be twice as likely to occur as the |
| // top half. A bit of calculus care of jar@ shows that the largest |
| // measurable delta is when the top of the range is 3/4ths of the |
| // way, so that's what we use in the test. |
| constexpruint64_t kTopOfRange= |
| (std::numeric_limits<uint64_t>::max()/4ULL)*3ULL; |
| constexprdouble kExpectedAverage=static_cast<double>(kTopOfRange/2); |
| constexprdouble kAllowedVariance= kExpectedAverage/50.0;// +/- 2% |
| constexprint kMinAttempts=1000; |
| constexprint kMaxAttempts=1000000; |
| |
| double cumulative_average=0.0; |
| int count=0; |
| while(count< kMaxAttempts){ |
| uint64_t value=RandGenerator(kTopOfRange); |
| cumulative_average=(count* cumulative_average+ value)/(count+1); |
| |
| // Don't quit too quickly for things to start converging, or we may have |
| // a false positive. |
| if(count> kMinAttempts&& |
| kExpectedAverage- kAllowedVariance< cumulative_average&& |
| cumulative_average< kExpectedAverage+ kAllowedVariance){ |
| break; |
| } |
| |
| ++count; |
| } |
| |
| ASSERT_LT(count, kMaxAttempts)<<"Expected average was "<< kExpectedAverage |
| <<", average ended at "<< cumulative_average; |
| } |
| |
| TEST(RandUtilTest,RandUint64ProducesBothValuesOfAllBits){ |
| // This tests to see that our underlying random generator is good |
| // enough, for some value of good enough. |
| uint64_t kAllZeros=0ULL; |
| uint64_t kAllOnes=~kAllZeros; |
| uint64_t found_ones= kAllZeros; |
| uint64_t found_zeros= kAllOnes; |
| |
| for(size_t i=0; i<1000;++i){ |
| uint64_t value=RandUint64(); |
| found_ones|= value; |
| found_zeros&= value; |
| |
| if(found_zeros== kAllZeros&& found_ones== kAllOnes){ |
| return; |
| } |
| } |
| |
| FAIL()<<"Didn't achieve all bit values in maximum number of tries."; |
| } |
| |
| TEST(RandUtilTest,RandBytesLonger){ |
| // Fuchsia can only retrieve 256 bytes of entropy at a time, so make sure we |
| // handle longer requests than that. |
| std::string random_string0=RandBytesAsString(255); |
| EXPECT_EQ(255u, random_string0.size()); |
| std::string random_string1=RandBytesAsString(1023); |
| EXPECT_EQ(1023u, random_string1.size()); |
| std::string random_string2=RandBytesAsString(4097); |
| EXPECT_EQ(4097u, random_string2.size()); |
| } |
| |
| // Benchmark test for RandBytes(). Disabled since it's intentionally slow and |
| // does not test anything that isn't already tested by the existing RandBytes() |
| // tests. |
| TEST(RandUtilTest, DISABLED_RandBytesPerf){ |
| // Benchmark the performance of |kTestIterations| of RandBytes() using a |
| // buffer size of |kTestBufferSize|. |
| constint kTestIterations=10; |
| constsize_t kTestBufferSize=1*1024*1024; |
| |
| std::array<uint8_t, kTestBufferSize> buffer; |
| constTimeTicks now=TimeTicks::Now(); |
| for(int i=0; i< kTestIterations;++i){ |
| RandBytes(buffer); |
| } |
| constTimeTicks end=TimeTicks::Now(); |
| |
| LOG(INFO)<<"RandBytes("<< kTestBufferSize |
| <<") took: "<<(end- now).InMicroseconds()<<"µs"; |
| } |
| |
| TEST(RandUtilTest,InsecureRandomGeneratorProducesBothValuesOfAllBits){ |
| // This tests to see that our underlying random generator is good |
| // enough, for some value of good enough. |
| uint64_t kAllZeros=0ULL; |
| uint64_t kAllOnes=~kAllZeros; |
| uint64_t found_ones= kAllZeros; |
| uint64_t found_zeros= kAllOnes; |
| |
| InsecureRandomGenerator generator; |
| |
| for(size_t i=0; i<1000;++i){ |
| uint64_t value= generator.RandUint64(); |
| found_ones|= value; |
| found_zeros&= value; |
| |
| if(found_zeros== kAllZeros&& found_ones== kAllOnes){ |
| return; |
| } |
| } |
| |
| FAIL()<<"Didn't achieve all bit values in maximum number of tries."; |
| } |
| |
| namespace{ |
| |
| constexprdouble kXp1Percent=-2.33; |
| constexprdouble kXp99Percent=2.33; |
| |
| doubleChiSquaredCriticalValue(double nu,double x_p){ |
| // From "The Art Of Computer Programming" (TAOCP), Volume 2, Section 3.3.1, |
| // Table 1. This is the asymptotic value for nu > 30, up to O(1 / sqrt(nu)). |
| return nu+ sqrt(2.* nu)* x_p+2./3.*(x_p* x_p)-2./3.; |
| } |
| |
| intExtractBits(uint64_t value,int from_bit,int num_bits){ |
| return(value>> from_bit)&((1<< num_bits)-1); |
| } |
| |
| // Performs a Chi-Squared test on a subset of |num_bits| extracted starting from |
| // |from_bit| in the generated value. |
| // |
| // See TAOCP, Volume 2, Section 3.3.1, and |
| // https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test for details. |
| // |
| // This is only one of the many, many random number generator test we could do, |
| // but they are cumbersome, as they are typically very slow, and expected to |
| // fail from time to time, due to their probabilistic nature. |
| // |
| // The generator we use has however been vetted with the BigCrush test suite |
| // from Marsaglia, so this should suffice as a smoke test that our |
| // implementation is wrong. |
| boolChiSquaredTest(InsecureRandomGenerator& gen, |
| size_t n, |
| int from_bit, |
| int num_bits){ |
| constint range=1<< num_bits; |
| CHECK_EQ(static_cast<int>(n% range),0)<<"Makes computations simpler"; |
| std::vector<size_t> samples(range,0); |
| |
| // Count how many samples pf each value are found. All buckets should be |
| // almost equal if the generator is suitably uniformly random. |
| for(size_t i=0; i< n; i++){ |
| int sample=ExtractBits(gen.RandUint64(), from_bit, num_bits); |
| samples[sample]+=1; |
| } |
| |
| // Compute the Chi-Squared statistic, which is: |
| // \Sum_{k=0}^{range-1} \frac{(count - expected)^2}{expected} |
| double chi_squared=0.; |
| double expected_count= n/ range; |
| for(size_t sample_count: samples){ |
| double deviation= sample_count- expected_count; |
| chi_squared+=(deviation* deviation)/ expected_count; |
| } |
| |
| // The generator should produce numbers that are not too far of (chi_squared |
| // lower than a given quantile), but not too close to the ideal distribution |
| // either (chi_squared is too low). |
| // |
| // See The Art Of Computer Programming, Volume 2, Section 3.3.1 for details. |
| return chi_squared>ChiSquaredCriticalValue(range-1, kXp1Percent)&& |
| chi_squared<ChiSquaredCriticalValue(range-1, kXp99Percent); |
| } |
| |
| }// namespace |
| |
| TEST(RandUtilTest,InsecureRandomGeneratorChiSquared){ |
| constexprint kIterations=50; |
| |
| // Specifically test the low bits, which are usually weaker in random number |
| // generators. We don't use them for the 32 bit number generation, but let's |
| // make sure they are still suitable. |
| for(int start_bit:{1,2,3,8,12,20,32,48,54}){ |
| int pass_count=0; |
| for(int i=0; i< kIterations; i++){ |
| size_t samples=1<<16; |
| InsecureRandomGenerator gen; |
| // Fix the seed to make the test non-flaky. |
| gen.ReseedForTesting(kIterations+1); |
| bool pass=ChiSquaredTest(gen, samples, start_bit,8); |
| pass_count+= pass; |
| } |
| |
| // We exclude 1% on each side, so we expect 98% of tests to pass, meaning 98 |
| // * kIterations / 100. However this is asymptotic, so add a bit of leeway. |
| int expected_pass_count=(kIterations*98)/100; |
| EXPECT_GE(pass_count, expected_pass_count-((kIterations*2)/100)) |
| <<"For start_bit = "<< start_bit; |
| } |
| } |
| |
| TEST(RandUtilTest,InsecureRandomGeneratorRandDouble){ |
| InsecureRandomGenerator gen; |
| |
| for(int i=0; i<1000; i++){ |
| volatiledouble x= gen.RandDouble(); |
| EXPECT_GE(x,0.); |
| EXPECT_LT(x,1.); |
| } |
| } |
| |
| TEST(RandUtilTest,MetricsSubSampler){ |
| MetricsSubSampler sub_sampler; |
| int true_count=0; |
| int false_count=0; |
| for(int i=0; i<1000;++i){ |
| if(sub_sampler.ShouldSample(0.5)){ |
| ++true_count; |
| }else{ |
| ++false_count; |
| } |
| } |
| |
| // Validate that during normal operation MetricsSubSampler::ShouldSample() |
| // does not always give the same result. It's technically possible to fail |
| // this test during normal operation but if the sampling is realistic it |
| // should happen about once every 2^999 times (the likelihood of the [1,999] |
| // results being the same as [0], which can be either). This should not make |
| // this test flaky in the eyes of automated testing. |
| EXPECT_GT(true_count,0); |
| EXPECT_GT(false_count,0); |
| } |
| |
| TEST(RandUtilTest,MetricsSubSamplerTestingSupport){ |
| MetricsSubSampler sub_sampler; |
| |
| // ScopedAlwaysSampleForTesting makes ShouldSample() return true with |
| // any probability. |
| { |
| MetricsSubSampler::ScopedAlwaysSampleForTesting always_sample; |
| for(int i=0; i<100;++i){ |
| EXPECT_TRUE(sub_sampler.ShouldSample(0)); |
| EXPECT_TRUE(sub_sampler.ShouldSample(0.5)); |
| EXPECT_TRUE(sub_sampler.ShouldSample(1)); |
| } |
| } |
| |
| // ScopedNeverSampleForTesting makes ShouldSample() return true with |
| // any probability. |
| { |
| MetricsSubSampler::ScopedNeverSampleForTesting always_sample; |
| for(int i=0; i<100;++i){ |
| EXPECT_FALSE(sub_sampler.ShouldSample(0)); |
| EXPECT_FALSE(sub_sampler.ShouldSample(0.5)); |
| EXPECT_FALSE(sub_sampler.ShouldSample(1)); |
| } |
| } |
| } |
| |
| }// namespace base |