Lasoldadura és la unió de dos materials, generalment metalls o termoplàstics,[1] percoalescència. En la qual les peces fusionadesfonent ambdues i afegint un material de farciment, el qual té unpunt de fusió menor al de la peça a soldar, per aconseguir un bany de material fos (bany de soldadura) que, en refredar-se, es converteix en una unió forta. Segons el mètode utilitzat s'exerceix pressió conjuntament amb calor, per produir la soldadura. Això diferencia la soldadura tova (en anglèsSoldering) i lasoldadura forta (en anglèsBrazing), que impliquen la fosa d'un material de baix punt de fusió entre peces de treball per formar un enllaç entre ells, sense fondre les peces de treball.
Moltesfonts d'energia diferents poden ser usades per a la soldadura, incloent una flama degas, unarc elèctric, unlàser, un raig d'electrons, processos defricció oultrasò. Per formar la unió entre dues peces de metall generalment s'utilitza unarc elèctric. Soldadures de fusió o termoplàstics es fan generalment del contacte directe amb una eina o un gas calent.
Mentre que sovint és un procés industrial, la soldadura pot ser feta en molts ambients diferents, incloent l'aire lliure, sota l'aigua i a l'espai. En qualsevol lloc, és una activitat perillosa i cal molta precaució per evitar cremades,descàrrega elèctrica, fums verinosos i la sobreexposició a lallum ultraviolada.
Fins al final del segle xix, l'únic procés de soldadura era lasoldadura de farga, que els ferrers han usat per segles per ajuntar metalls escalfadors i colpejant. Lasoldadura a l'arc i lasoldadura a gas estaven entre els primers processos a desenvolupar tardanament en el segle, seguint poc després lasoldadura per resistència. La tecnologia de la soldadura va avançar ràpidament durant el principi del segle XX mentre que laPrimera Guerra Mundial i laSegona Guerra Mundial van conduir la demanda de mètodes de juntura fiables i barats. Després de les guerres, van ser desenvolupades diverses tècniques modernes de soldadura, incloent mètodes manuals com laSoldadura per elèctrode revestit per arc, convertit en un dels més populars mètodes de soldadura, així com processos semiautomàtics i automàtics com araSoldadura GMAW,soldadura d'arc submergit,soldadura d'arc amb nucli de fundent isoldadura per electroescoria. Els progressos van continuar amb la invenció de lasoldadura per raig làser i lasoldadura amb raig d'electrons a mitjans del segle xx. Avui en dia, la ciència continua avançant. Lasoldadura robotitzada està arribant a ser més corrent a les instal·lacions industrials. Els investigadors continuen desenvolupant nous mètodes i guanyant major comprensió de la qualitat i les propietats de la soldadura.
La història de la unió de metalls es remunta a diversos mil·lennis, amb els primers exemples de soldadura des de l'edat del bronze i l'edat de ferro aEuropa i l'Orient Mitjà. La soldadura va ser usada en la construcció delPilar de Ferro aDelhi, a l'Índia, erigit prop de l'any 310 i pesa 5,4 tones mètriques.[2] L'edat mitjana va portar avenços en lasoldadura de farga, amb la qual els ferrers repetidament colpejaven i escalfaven el metall fins que s'unia. El 1540,Vannoccio Biringuccio va publicar l'obreDe la pirotechnia, que inclou descripcions de l'operació de forjat. Els artesans delRenaixement eren hàbils en el procés, i la indústria va continuar creixent durant els segles següents.[3] No obstant això, la soldadura va ser transformada durant el segle xix. El 1800, SirHumphry Davy va descobrir l'arc elèctric, i els avenços en lasoldadura per arc van continuar amb les invencions dels elèctrodes de metall per un rus,Nikolai Slavyanov, i un americà,C. L. Coffin a la fi delsanys 1800, fins i tot com lasoldadura per arc de carbó, que usava un elèctrode de carbó, va guanyar popularitat. Al voltant de 1900,A. P. Strohmenger va llançar un elèctrode de metall recobert aGran Bretanya, que va donar un arc més estable, i el 1919, la soldadura decorrent altern va ser inventada perC. J. Holslag, però no va arribar a ser popular per una altra dècada.[4]
Lasoldadura per resistència també va ser desenvolupada durant les dècades finals del segle xix. Les primeres patents van anar aElihu Thomson el 1885, que va produir posteriors avenços durant els següents 15 anys. Lasoldadura de tèrmit va ser inventada el 1893, i al voltant d'aquest temps, va establir-se un altre procés, lasoldadura a gas. L'acetilè va ser descobert el 1836 perEdmund Davy, però el seu ús en la soldadura no va ser pràctic fins a prop de 1900, quan va ser desenvolupat unbufador convenient.[5] Al principi, la soldadura de gas va ser un dels més populars mètodes degut a la seva portabilitat i cost relativament baix. No obstant això, a mesura que progressava el segle xx, va baixar en les preferències per a les aplicacions industrials. En gran part va ser substituïda per la soldadura d'arc, en la mesura que van continuar sent desenvolupades les cobertes de metall per a l'elèctrode, conegudes com afon), que estabilitzen l'arc i blindada el material base de les impureses.[6]
LaPrimera Guerra Mundial va causar un repunt important, amb les diferents forces militars que procuraven determinar quins dels diversos processos nous. Els britànics van usar primàriament la soldadura per arc, fins i tot van construir una nau, elFulagar, amb un casc completament soldat. Els nord-americans eren més cauts, però van començar a reconèixer els beneficis de la soldadura per arc quan van adonar-se que permetia reparar ràpidament les seves naus després delsatacs alemanys al port deNova York al principi de la guerra. També la soldadura d'arc va ser aplicada primer als avions durant la guerra als fuselatges d'avions alemanys.[7]
Durant elsanys 1920, importants avenços van ser fets com per exemple lasoldadura automàtica el 1920, en la qual el filferro de l'elèctrode era alimentat contínuament. Elgas de protecció va convertir-se en un tema rebent molta atenció, mentre que els científics procuraven protegir les soldadures contra els efectes de l'oxigen i delnitrogen en l'atmosfera. La porositat i la fragilitat eren els problemes primaris, i les solucions que van desenvolupar van incloure l'ús de l'hidrogen,argó, iheli com a atmosferes de soldadura.[8] Durant la següent dècada, posteriors avenços van permetre la soldadura de metalls reactius com l'alumini i elmagnesi. Això, conjuntament amb l'automatització, el corrent altern i els fundents alimentar una important extensió de les aplicacions industrials durant els anys 1930 i durant laSegona Guerra Mundial.[9]
A mitjans del segle xx, van ser inventats molts mètodes nous. El 1930 va veure el llançament de lasoldadura de pern, que aviat va arribar a ser popular a la fabricació de naus i la construcció. Lasoldadura d'arc submergit va ser inventada el mateix any, i continua sent popular avui en dia. El 1941, després de dècades de desenvolupament, lasoldadura d'arc de gas tungstè va ser finalment perfeccionada, seguida el 1948 per lasoldadura per arc metàl·lic amb gas: permet la soldadura ràpida de materials no ferrosos però requereix costosos gasos de blindatge. Lasoldadura d'arc metàl·lic blindat va ser desenvolupada durant els anys 1950, utilitza un fundent d'elèctrode consumible cobert, i es va convertir ràpidament en el més popular procés de soldadura d'arc metàl·lic. El 1957, va debutar el procés desoldadura per arc amb nucli fundent, en què l'elèctrode de filferro autoblindat podia ser usat amb un equip automàtic que accelera el procés. Aquest mateix any va ser inventada lasoldadura d'arc de plasma. Lasoldadura per electroescoria va ser introduïda el 1958, i va ser seguida el 1961 per lasoldadura per electrogen.[10]
Altres desenvolupaments recents inclouen el 1958 l'important èxit de lasoldadura amb raig d'electrons, que fa possible la soldadura profunda i estreta per mitjà de la font de calor concentrada. Seguint la invenció dellàser el 1960, lasoldadura per raig làser va debutar diverses dècades més tard, i ha demostrat ser especialment útil en la soldadura automatitzada d'alta velocitat. No obstant això, tots dos processos continuen sent altament costosos per causa de l'alt cost de l'equip.[11]
Aquests processos utilitzen una font d'alimentació per a soldadura per crear i mantenir un arc elèctric entre un elèctrode i el material base per a fondre els metalls al punt de la soldadura. Poden usar-se tantcorrent continu (CC) comaltern (CA), i elèctrodes consumibles o no consumibles. De vegades, la regió de la soldadura és protegida per ungas inert o semi-inert, conegut com agas de protecció, i el material de farciment de vegades és usat també.
Per proveir l'energia elèctrica, poden ser utilitzades un nombre diferents de fonts d'alimentació. La classificació més comuna són les fonts d'alimentació de corrent constant i les fonts d'alimentació de voltatge constant. En la soldadura d'arc, la longitud de l'arc està directament relacionada amb el voltatge, i la quantitat d'entrada de calor està relacionada amb el corrent. Les fonts d'alimentació de corrent constant són utilitzades amb més freqüència per als processos manuals de soldadura com ara la soldadura d'arc de gas tungstè i soldadura d'arc metàl·lic blindat, perquè elles mantenen un corrent constant fins i tot mentre el voltatge varia. Això és important en la soldadura manual, ja que pot ser difícil sostenir l'elèctrode perfectament estable, i com a resultat, la longitud de l'arc i el voltatge tendeixen a fluctuar. Les fonts d'alimentació de voltatge constant mantenen el voltatge constant i varien el corrent, i com a resultat, són utilitzades més sovint per als processos de soldadura automatitzats com ara la soldadura d'arc metàl·lic amb gas, soldadura per arc de nucli fundent i la soldadura d'arc submergit. En aquests processos, la longitud de l'arc és mantinguda constant, ja que qualsevol fluctuació de la distància entre material base és ràpidament rectificat per un canvi gran en el corrent. Per exemple, si el filferro i el material base s'acosten massa, el corrent augmentarà ràpidament, el que al seu torn augmenta la calor i l'extremitat del filferro es funda, tornant-lo a la seva distància de separació original.11
El tipus de corrent utilitzat també té un paper important. Els elèctrodes de procés consumibles com els de la soldadura d'arc de metall blindat i la soldadura d'arc metàl·lic amb gas generalment usen corrent directa, però l'elèctrode pot ser carregat positivament o negativament. L'ànode carregat positivament tindrà una concentració més gran de calor, i com a resultat, canviar la polaritat de l'elèctrode té un impacte en les propietats de la soldadura. Si l'elèctrode és carregat negativament, el metall base estarà més calent, incrementant la penetració i la velocitat de la soldadura. Alternativament, un elèctrode positivament carregat resulta en soldadures més superficials.[12] Els processos d'elèctrode no consumibles, com ara la soldadura d'arc de gas tungstè, poden utilitzar qualsevol tipus de corrent directa, així com corrent altern. No obstant això, amb el corrent directe, pel fet que l'elèctrode només crea l'arc i no proporciona el material de farciment, un elèctrode positivament carregat causa soldadures superficials, mentre que un elèctrode negativament carregat fa soldadures més profundes.[13] El corrent altern es mou ràpidament entre aquests dos i dona per resultat soldadures de mitjana penetració. Una desavantatge de la CA, el fet que l'arc ha de ser reencès després de cada pas per zero, s'ha tractat amb la invenció d'unitats d'energia especials que produeixen un patró quadrat d'ona en comptes del patró normal de l'ona de si, que fan diferents passos a zero ràpids i minimitzen els efectes del problema.[14]
Un dels tipus més comuns és la soldadura manual amb elèctrode revestit (en anglès: SMAW, Shielded Metal Arc Welding), que també és coneguda com a soldadura manual d'arc metàl·lic (MMA) o soldadura d'elèctrode. El corrent elèctric es fa servir per crear un arc entre el material base i la vareta d'elèctrode consumible, que és d'acer i està cobert amb un fundent que protegeix l'àrea treball contra l'oxidació i la contaminació per mitjà de la producció del gasdiòxid de carboni. El nucli en si mateix de l'elèctrode actua com a material de farciment, el que necessita material de farciment addicional.
El procés és versàtil i pot realitzar-se amb un equip relativament barat, que el fa adequat per a treballs de taller i de camp.[15] La formació de l'operador pot és curta. El procediment és una mica lent, ja que els elèctrodes consumibles han de ser substituïts freqüentment i perquè l'escòria, el residu del fundent, ha de ser retirada després de l'operació.[16] A més, el procés és generalment limitat a materials ferrosos, encara que amb elèctrodes especials es poden soldarferro colat,níquel,alumini,coure i d'altres metalls.
Lasoldadura d'arc metàl·lic amb gas (GMAW), també coneguda com a soldadura de gas de metall inert o soldadura MIG, és un procés semiautomàtic o automàtic que fa servir una alimentació contínua de filferro com elèctrode i una barreja de gas inert o semi-inert per protegir la soldadura contra la contaminació. Com que l'elèctrode és continu, les velocitats són majors per a la GMAW que per a la SMAW. També, la mida més petit de l'arc facilita el seu ús en posicions de treball difícils a dalt o sota estructures existents.
L'equip i la seva disposició per al procés de GMAW és més complex i costós que per a la SMAW. Per tant, la GMAW és menys portable i versàtil. Per la necessitat d'un gas de blindatge separat, no és particularment adequat per al treball a l'aire lliure. No obstant això, la velocitat superior fa la GMAW més adequada en línies de producció on s'aplica a una àmplia varietat de metalls ferrosos i no ferrosos.[17]
Lasoldadura d'arc de nucli fundent (FCAW), fa servir un equip similar però utilitza un filferro que consisteix en un elèctrode d'acer que envolta un material de farciment en pols. Aquest material és més car que el tradicional filferro i altres pot generar fums o escòria, però fins i tot el treball es fa més ràpidament i amb una major penetració del metall.[18]
La soldadura de gas inert de tungstè (TIG) (també a vegades designada erròniament comsoldadura heliarc), és un procés manual que utilitza un elèctrode detungstè no consumible, una barreja de gas inert o semi-inert i un material de farciment separat. Especialment útil per materials fins, aquest mètode és caracteritzat per un arc estable i una soldadura d'alta qualitat, però requereix una significativa habilitat de l'operador i és un procés relativament lent.
La GTAW pot ser usada en gairebé tots els metalls soldables, encara que s'aplica més sovint a metalls d'acer inoxidable i lleugers. S'utilitza quan calen enllaços d'alta qualitat, per exemple enbicicletes,avions i aplicacions navals.[19] Un procés relacionat, lasoldadura d'arc de plasma, també utilitza un elèctrode de tungstè però utilitza un gas de plasma per fer un arc més concentrat que el de la GTAW, que fa el control transversal més crític. Així generalment la tècnica es restringeix a un procés mecanitzat. A causa del seu corrent estable, pot ser usat en una gamma més àmplia de materials gruixuts que el procés GTAW. De més, és molt més ràpid. Pot ser aplicat als mateixos materials que la GTAW excepte almagnesi. S'utilitza sovint en aplicacions automatitzades per a lligar l'acer inoxidable. Una variació del procés és eltall per plasma, un eficient procés de tall d'acer.[20]
Lasoldadura d'arc submergit (SAW) és un mètode d'alta productivitat al qual l'arc es prem sota una capa de coberta de flux. Això augmenta la qualitat de l'arc, ja que el flux bloqueja els contaminants a l'atmosfera. L'escòria surt per si mateixa, i combinada amb l'ús d'una alimentació de filferro contínua, la velocitat de deposició de la soldadura és alta. Les condicions de treball estan molt millorades sobre altres processos, com que el flux oculta l'arc i no es produeix gaire fum. El procés és utilitzat especialment per a productes grans i per a la fabricació dels recipients de pressió.[21] Altres processos de soldadura d'arc inclouen lasoldadura d'hidrogen atòmic, lasoldadura d'arc de carboni, lasoldadura de electroescoria, lasoldadura per electrogen, i lasoldadura d'arc de pern.
Soldadura a gas d'una armadura d'acer usant el procés deoxiacetilènica.
El procés més comú de soldadura a gas és lasoldadura oxiacetilènica, també coneguda com aautògena ooxi-combustible. És un dels més vells i més versàtils processos, però en anys recents s'ha desestimat en aplicacions industrials, excepte per a soldar canonades i tubs o treballs de reparació. L'equip és relativament barat i simple. La combustió de l'acetilè i l'oxigen produeix una flama de soldadura de prop de 3.100 °C. Com que la flama és menys concentrada que un arc elèctric, causa un refredament més lent de l'enllaç, el que pot conduir a grans tensions residuals i distorsions, encara que facilita la soldadura d'acers d'alt aliatge. Un procés semblant, generalment anomenat tall d'oxicombustible, es fa servir per tallar els metalls.[6] Altres mètodes com lasoldadura d'acetilè i aire,soldadura d'hidrogen i oxigen, isoldadura de gas a pressió són molt similars, només es canvia el tipus de gasos. Unatorxa d'aigua de vegades s'utilitza per a la soldadura de precisió d'articles com joieria. S'usa també en lasoldadura de plàstic, encara que la substància escalfada és l'aire, i les temperatures són molt més baixes.
Lasoldadura per resistència implica la generació de calor passant corrent a través de la resistència causada pel contacte entre dos o més superfícies de metall. Es formen petits bassals de metall fos en l'àrea de soldadura a mesura que l'elevada corrent (1.000-100.000A) passa a través del metall. Els mètodes de la soldadura per resistència són eficients i causen poca contaminació, però les seves aplicacions són bastant limitades i el cost de l'equip pot ser elevat.
Soldador de punt
Lasoldadura per punts n'és una variant, usada per ajuntar fulles de metall solapades de fins a 3mm de gruix. Dos elèctrodes són usats simultàniament per a subjectar les fulles de metall juntes i per passar corrent a través de les fulles. Els avantatges del mètode inclouen l'ús eficient de l'energia, poca deformació de la peça de treball, altes velocitats de producció, fàcil automatització, i el no requeriment de materials de farciment. La força de l'enllaç és perceptiblement més baixa que amb altres mètodes. S'utilitza extensivament en la indústria d'automòbils. Un automòbil mitjà pot tenir diversos milers de punts soldats, aplicats perrobots industrials. Un procés especialitzat, anomenatsoldadura de xoc, s'utilitza per a l'acer inoxidable.
Com que la soldadura de punt, lade costura confia en dos elèctrodes que aplicar la pressió i el corrent per ajuntar fulles de metall. No obstant això, en comptes d'elèctrodes de punt, els elèctrodes amb forma de roda, roden al llarg i sovint alimenten la peça de treball, per a fer enllaços continus i llargs. Al passat, s'utilitzava en la fabricació de llaunes de begudes, però ara els seus aplicacions són més limitades. Altres variants són lasoldadura de Flaix, lasoldadura de projecció, i lasoldadura de bolcat.
Els mètodes per raig d'energia, anomenatssoldadura per raig làser isoldadura amb raig d'electrons, són processos relativament nous que han arribat a ser absolutament populars en aplicacions d'alta producció. Els dos processos principalment es diferencien per la seva font d'energia. La soldadura de raig làser empra un raig làser altament enfocat, mentre que la soldadura de raig d'electrons és feta en un buit i fa servir un feix d'electrons. Ambdues tenen una molt alta densitat d'energia, fan possible una penetració de soldadura profunda i minimitzen la mida de l'àrea soldada. Ambdós processos són extremadament ràpids, i són fàcils d'automatitzar. Els desavantatges primàries són el cost de l'equip (tot i que aquests s'està baixant) i una susceptibilitat a esquerdar-se. Els desenvolupaments en aquesta àrea inclouen lasoldadura de làser híbrid, que utilitza el raig làser i l'arc per a fins i tot millors propietats de l'enllaç.[22]
Com el procés més antic, la soldadura de farga, alguns mètodes moderns no impliquen fosa dels materials que són ajuntats. Un dels més populars, lasoldadura ultrasònica, és usada per a connectar fulles o filferros fins de metall o termoplàstics, fa vibrar els materials en alta freqüència i sota alta pressió. L'equip i els mètodes implicats són similars als de la soldadura per resistència, però en comptes de corrent elèctric, la vibració proporciona la font d'energia. Soldar metalls amb aquest procés no implica la seva fosa. Quan s'estan soldant plàstics, els materials han de tenir similars temperatures de fusió, i les vibracions són introduïdes verticalment. La soldadura ultrasònica s'usa per fer connexions elèctriques d'alumini o coure, així com per lligar polímers.
Tipus comuns de juntures de soldadura (1) juntura per testa quadrat (2) juntura per testa en-V (3) juntura solapada (4) juntura en-T.
Les soldadures poden ser preparades geomètricament de moltes maneres diferents. Els cinc tipus bàsics de juntures de soldadura són la juntura d'extrem, la juntura de falda, la juntura de cantonada, la juntura de vora, i la juntura-T. Hi ha altres variacions, com ara la preparació de juntures doble-V, caracteritzades per les dues peces de material cadascuna que es lliguen a un sol punt central en la meitat de la seva alçada. La preparació de juntures sol-U i doble-U són també força comuns-en lloc de tenir vores rectes com la preparació de juntures sol-V i doble-V, elles són corbades, tenint la forma d'una U. Les juntures de falda també són comunament més que dues peces gruixudes que depenen del procés utilitzat i del gruix del material, moltes peces poden ser soldades juntes en una geometria de juntura de falda.[24]
Sovint, certs processos de soldadura fan servir exclusivament o quasi exclusivament dissenys de juntura particulars. Per exemple, la soldadura de punt de resistència, la de raig làser i la de raig d'electrons són realitzades més freqüentment amb juntures de falda. No obstant això, altres mètodes com la soldadura per arc de metall blindat, són extremadament versàtils i poden realitzar qualsevol tipus de juntura. Addicionalment, alguns processos poden ser usats per fer soldadures multipàs, en què es permet refredar una soldadura, i llavors una altra soldadura és realitzada sobre de la primera. Això permet, per exemple, la soldadura de seccions gruixudes disposades en una preparació de juntura sol-V.[25]
La secció creuada d'una juntura d'extrem soldat, amb el gris més fosc representant la zona de la soldadura o la fusió, el gris mig la zona afectada per la calor ZAT, i el gris més clar el material base.
Després de soldar, un nombre de diferents regions poden ser identificades en l'àrea de la soldadura. La soldadura en si mateixa és anomenada la zona de fusió-més específicament, aquesta és on el metall de farciment va ser posat durant el procés. Les propietats de la zona de fusió depenen primàriament del metall de farciment, i la seva compatibilitat amb els materials base. És envoltada per lazona afectada de calor, l'àrea que va tenir la seva microestructura i propietats alterades per la soldadura. Aquestes propietats depenen del comportament del material base quan està subjecte a la calor. El metall en aquesta àrea és sovint més feble que el material base i la zona de fusió, i és també on són trobades les tensions residuals.[26]
La mesura principal de la qualitat d'una soldadura és la seva fortalesa i la fortalesa del material al voltant d'ella. Molts factors diferents influeixen en això, incloent-hi el mètode de soldadura, la quantitat i la concentració de l'entrada de calor, el material base, el material de farciment, el material fundent, el disseny de l'acoblament i les interaccions entre tots aquests factors. Per provar la qualitat es fan tantassajos no destructius comassajos destructius, per verificar que l'absència de defectes, un nivell acceptable de tensions i distorsió residuals, i les propietats de la zona afectada per la calor segons les normes tècniques, codis i especificacions internacionals. No tots els metalls són adequats per a la soldadura, i no tots els metalls de farciment s'acomoden bé amb materials base corrents.
L'àrea blava resulta de l'oxidació a una temperatura corresponent a 316 °C. Això és una manera precisa d'identificar la temperatura, però no representa l'amplada de la zona afectada per la calor (ZAT). La ZAT és l'àrea estreta que immediatament envolta el metall base soldat.
Els efectes de soldar poden ser perjudicials per al material envoltant la soldadura. Depenent dels materials usats i l'entrada de calor del procés usat, la zona afectada per la calor (ZAT) pot variar en grandària i fortalesa. Ladifusivitat tèrmica del material base és molt important - si la difusivitat és alta, la velocitat de refredament del material és alta i la ZAT és relativament petita. Inversament, una difusivitat baixa condueix a un refredament més lent i a una ZAT més ample. La quantitat de calor injectada també té un paper important, ja que els processos com la soldadura oxiacetilènica tenen una entrada de calor no concentrat i augmenten la mida de la zona afectada. Els processos com la soldadura per raig làser tenen una quantitat altament concentrada i limitada de calor, el que resulta en una zona afectada menor. La soldadura d'arc cau entre aquests dos extrems, amb els processos individuals variant una mica en entrada de calor.[27][28] Per calcular la calor per als procediments de soldadura d'arc, pot ser usada la següent fórmula:
El rendiment depèn del procés: la soldadura d'arc de metall revestit té un valor de 0,75, la soldadura per arc metàl·lic amb gas i la soldadura d'arc submergit, 0,9, i la soldadura d'arc de gas tungstè, 0,8.[29]
Els mètodes de soldadura que impliquen fondre el metall en el lloc de l'entroncament són necessàriament propensos a lacontracció a mesura que el metall escalfat es refreda. Al seu torn, la contracció pot introduir tensions residuals i tant distorsió longitudinal com rotatòria. La distorsió pot plantejar un problema important, ja que el producte final no té la forma desitjada. Per alleujar la distorsió rotatòria, les peces de treball poden ser compensades, de manera que la soldadura doni lloc a una peça correctament formada.[30] Altres mètodes de limitar la distorsió, com afermar en el lloc les peces de treball amb abraçadores, causa l'acumulació de la tensió residual a la zona afectada per la calor del material base. Aquestes tensions poden reduir la força del material base, i poden conduir a la falla catastròfica per esquerdament en fred, com en el cas de diversos accidents en els vaixells del tipusLiberty. L'esquerdament en fred està limitat als acers, i fa referència a la formació delmartensita mentre que la soldadura es refreda. L'esquerdament passa a la zona afectada per la calor del material base. Per a reduir la quantitat de distorsió i estrès residual, la quantitat d'entrada de calor ha de ser limitada, i la seqüència de soldadura utilitzada no ha de ser d'un extrem directament a l'altre, sinó fent passades en petits segments. L'altre tipus d'esquerdament, l'esquerdament en calent o esquerdament de solidificació, pot passar en tots els metalls, i passa a la zona de fusió de la soldadura. Per a disminuir la probabilitat d'aquest tipus d'esquerdament, ha de ser evitat l'excés de material restringit, i ha de ser usat un material de farciment (o aportació) apropiat.[31]
Lasoldabilitat d'acers és inversament proporcional a la sevatrempabilitat, que mesura la probabilitat de formarmartensita. La trempabilitat de l'acer depèn de la seva composició química, amb grans quantitats de carboni i d'altres elements d'aliatge resultant en major trempabilitat i, per tant, una soldabilitat menor. Per poder jutjar els aliatges composts de molts materials diferents, es fa servir la mesura delcontingut equivalent de carboni per comparar les soldabilitats relatives de diferents aliatges en comparar les seves propietats a unacer al carboni simple. L'efecte sobre la soldabilitat d'elements com elcrom i elvanadi, mentre que no és tan gran com el delcarboni, és superior a la del coure i el níquel. A mesura que s'eleva el contingut equivalent de carboni, la soldabilitat de l'aliatge decreix.[32] El desavantatge d'usar simple carboni i acers de baix aliatge és la seva menor resistència - hi ha una compensació entre la resistència del material i la soldabilitat. Elsacers d'alta resistència i baix aliatge van ser desenvolupats especialment per als usos en la soldadura durant els anys 1970, i aquests materials, generalment fàcils de soldar tenen bona resistència.[33]
A causa del seu alt contingut de crom, els acers inoxidables es comporten d'una manera diferent a altres acers respecte a la soldabilitat. Els grausaustenítics dels acers inoxidables tendeixen a ser més soldables, però són susceptibles a la distorsió a causa del seu alt coeficient d'expansió tèrmica. Algunsaliatges d'aquest tipus són propenses a esquerdar-se i també a tenir una reduïda resistència a la corrosió. Si no està controlada la quantitat deferrita en la soldadura és possible l'esquerdament calent. Per alleujar el problema, es fa servir un elèctrode que diposita un metall de soldadura que conté una quantitat petita de ferrita. Altres tipus d'acers inoxidables, com ara els acers inoxidables ferrítics i martensítics, no són fàcilment soldables, i sovint han de ser preescalfat i soldats amb elèctrodes especials.[34]
La soldabilitat dels aliatges d'alumini varia significativament depenent de la composició química de l'aliatge usada. Els aliatges d'alumini són susceptibles a l'esquerdament calenta, i per combatre el problema dels soldadors augmenten la velocitat de la soldadura per reduir l'aportació de calor. El preescalfament redueix el gradient de temperatura a través de la zona de soldadura i, per tant, ajuda a reduir l'esquerdament calent, però pot reduir les característiques mecàniques del material base i no ha de ser usat quan el material base està restringit. El disseny de l'entroncament també pot canviar-se, i pot seleccionar un aliatge de farciment més compatible per a disminuir la probabilitat de l'esquerdament calenta. Els aliatges d'alumini també han de ser netejats abans de la soldadura, amb l'objecte de treure tots els òxids, olis, i partícules soltes de la superfície de treball. Això és particularment important a causa de la susceptibilitat d'una soldadura d'alumini a laporositat a causa delhidrogen i laescòria a causa deloxigen.[35]
Encara que moltes aplicacions es duen a terme en ambients controlats com fàbriques i tallers de reparacions, alguns processos s'usen amb freqüència en condicions més difícils, com a l'aire obert, sota l'aigua i a l'espai. A l'aire lliure, com ara la construcció i la reparació, la soldadura d'arc de metall blindat és el procés més comú. Els processos que utilitzen gasos inerts són problemàtics en aquest ambient, perquè moviments atmosfèrics impredictibles poden donar lloc a una soldadura fallida. La soldadura d'arc de metall blindat, la d'arc amb nucli de fundent i d'arc de gas wolframi poden aplicar-se en àmbits subaquàtics: la construcció i la reparació de naus, plataformes fora de la costa i canonades. També és possible soldar a l'espai, com van provar per primera vegada el 1969 cosmonautes russos, que van dur a terme experiments de soldadura d'arc de metall blindat, d'arc de plasma, i de feix d'electrons en un ambient despressuritzat. Avui en dia els investigadors continuen desenvolupant mètodes per a usar altres processos en l'espai, com la soldadura de raig làser, per resistència, i per fricció. Els avenços tècnics semblen condicions preliminars indispensables per a projectes com la construcció de l'Estació Espacial Internacional, per al qual caldria ajuntar en l'espai les parts manufacturades a laTerra.[36]
La soldadura necessita una protecció apropiada, per tal d'evitar riscos de lesió, de malalties professionals o mort. El risc de cremades o electrocució és significatiu pel fet que molts procediments impliquen un arc elèctric o flama oberts. Per prevenir, les operadors han d'utilitzarroba de protecció calçat homologat, guants de cuir gruixuts i jaquetes protectores de mànigues llargues per evitar l'exposició a les espurnes, la calor i les flames. A més, l'exposició a la brillantor lallum ultraviolada de l'àrea de la soldadura sense protecció produeix una lesió ocular anomenatqueratitis, una inflamació de lacòrnia que pot cremar lesretines en no utilitzar lesulleres protectores, els cascs i caretes amb filtres de vidre fosc. Per protegir els espectadors, la llei de seguretat[cal citació] en el treball exigeix que s'utilitzin mampares o cortines translúcides que envoltin l'àrea de treball. Aquestes cortines, fetes d'una pel·lícula plàstica declorur de polivinil, protegeixen els treballadors propers de l'exposició a la llum UV, però no han de ser usades per a reemplaçar el filtre de vidre dels cascs i caretes del soldador.[37]
Sovint els soldadors també estan exposats a gasos tòxics i a partícules fines suspeses en l'aire. En diversos procediments es produeixfum carregat de partícules de d'òxids, que entre d'altres poden produir síndromes comfebre del vapor metàl·lic. Partícules més petites augmenten latoxicitat dels vapors. A més, molts processos produeixen vapors i gasos, tal comdiòxid de carboni,ozó imetalls pesants, tòxics sense ventilació i protecció apropiats. Per a aquest tipus de treballs, se sol portar mascareta per partícules. A causa de l'ús de gasos comprimits i flames, en molts processos de soldadura es planteja un risc d'explosió i de foc. Com a precaució es limita la concentració d'oxigen i la presència de materials combustibles al lloc de treball.[37]