Movatterモバイル変換


[0]ホーム

URL:


Vés al contingut
Viquipèdial'Enciclopèdia Lliure
Cerca

Alcalinoterri

De la Viquipèdia, l'enciclopèdia lliure

Elsmetalls alcalinoterris són elselementsmetàl·lics del grup segon de lataula periòdica, caracteritzats per tenir unaconfiguració electrònicans². Aquests elements són:beril·li (Be),magnesi (Mg),calci (Ca),estronci (Sr),bari (Ba) iradi (Ra).

Grup2
Període
24
Be
312
Mg
420
Ca
538
Sr
656
Ba
788
Ra

Tendeixen a perdre els dos electrons de la capa de valència per formarcations divalents. Són d'aspecte argentat,tous i pocdensos.Reaccionen amb elshalògens per formarsals iòniques, i amb l'aigua per formarhidròxidsbàsics. En general, són molt menysreactius que elsmetalls alcalins. S'observa una disminució bastant constant de l'electronegativitat en passar del beril·li al radi. Els propis metalls sónagents reductors molt reactius.

El nom era utilitzat ja en el segle XVII[1] per fer referència a substàncies anomenades «terres» (calç,magnesia…), que no eren metalls, prou insolubles dins d'aigua i que no es descomponien en ser escalfades; i que tenien propietatsalcalines, ja que en reaccionar amb aigua produïen hidròxids.[2]

Posició dels alcalinoterris a la taula periòdica

A excepció del radi, tots els alcalinoterris i els seus compostos tenen aplicació comercial fins a cert punt, especialment els aliatges de magnesi i una gran varietat de compostos de calci. El magnesi i el calci són abundants a la naturalesa (setè i cinquè elements més comuns a l'escorça terrestre) i tenen un paper important en els processos geològics (per exemple els carbonats de calci i de magnesi es dissolen i precipiten en elcarst) i biològics (així el magnesi forma part de l'estructura de laclorofil·la i el calci delsossos.). El radi és un element rar i tots els seusisòtops sónradioactius. Mai no hi ha hagut producció comercial d'aquest element i, tot i que els seus compostos s'empraren amb freqüència a la primera meitat del segle XX per al tractament delcàncer, han estat substituïts en gran manera per alternatives menys costoses.

Història

[modifica]
Òxid de calciCaO{\displaystyle {\ce {CaO}}}.

El primer alcalinoterri conegut fou lacalç (llatícalx), que ara se sap que ésòxid de calciCaO{\displaystyle {\ce {CaO}}}; s'utilitzava en temps antics en la composició demorter. El nom de magnesi ve del mineral conegut antigament com magnesia (períclasi),òxid de magnesiMgO{\displaystyle {\ce {MgO}}}, i que probablement deriva deMagnesia, un districte deTessàlia aGrècia, que el químic escocèsJoseph Black (1728-1799) el 1755 demostrà que era un compost diferent de la calç; observà que la magnesia donava lloc a un sulfat soluble, mentre que el derivat de la calç se sabia que era insoluble.

Períclasi,òxid de magnesiMgO{\displaystyle {\ce {MgO}}}.

El 1774 el químic suecCarl Wilhelm Scheele (1742-1786) descobrí una nova base, la barita oòxid de bariBaO{\displaystyle {\ce {BaO}}}, com a component menor del mineralpirolusita, i a partir d'aquesta base preparà alguns cristalls desulfat de bariBaSO4{\displaystyle {\ce {BaSO4}}}, que envià al seu col·laborador el químic suecJohan Gottlieb Gahn (1745-1815), que havia descobert elmanganès. Un mes després, Gahn trobà que el mineralbaritina també estava compost per sulfat de bari. Només després que labateria elèctrica estigués disponible, el químic anglèsHumphry Davy (1778-1829) finalment aconseguí el 1808 aïllar l'element per electròlisi.[3] El seu nom deriva del mineral baritina o barita, i aquest del grec βαρύςbarýs 'pesant'.[4]

Cristalls deberil vermell.

Els químics londinencsWilliam Cruickshank iAdair Crawford identificaren una altra terra, l'estroncia (òxid d'estronciSrO{\displaystyle {\ce {SrO}}}) el 1789, en examinar el mineralestroncianita, formada percarbonat d'estronciSrCO3{\displaystyle {\ce {SrCO3}}}, trobat en una mina de plom aStrontian, aArgyllshire,Escòcia.

El mineralogista francèsRené Just Haüy (1743–1822) sospità que elberil contenia un element desconegut i demanà al químicLouis Nicolàs Vauquelin (1863–1829) l'analitzés.[5][6] El 15 de febrer de 1798 presentà els resultats davant de l'Académie des Sciences comunicant que havia aïllat l'òxid d'un nou element, al qual no donà nom.[7] Els editors delsAnnales de Chimie proposaren a l'article de Vauquelin anomenar el nou òxid «glucina» del grecγλυκυς, 'dolç', perquè les seves sals solubles en aigua tenien un gust dolç i perquè aquest nom seria fàcil de recordar.[7] Tot i això, el 1802 el químic alemanyMartin Heinrich Klaproth (1843–1817) proposà que seria millor anomenar la nova terra, l'òxid, «beril·lina» perquè les sals d'itri també són de sabor dolç. La proposta fou acceptada i després el nou element fou anomenat «beril·li».[6] L'alemanyFriedrich Wöhler (1800–1882) i el francèsAntoine Bussy (1894–1882), de forma independent, van aïllar el metall el1828 mitjançant reacció depotassi ambclorur de beril·li.[5][6] Com que el beril·li és semblant a l'alumini, els químics estaven confosos sobre la sevavalència imassa atòmica.Ivan Avdéiev (1818–1865),Bohuslav Brauner (1855–1935) iDmitri I. Mendeléiev (1834–1907) argumentaren que lallei periòdica exigia que el beril·li fos bivalent.[8] El 1842 Avdéiev demostrà que la fórmula de l'òxid eraBeO{\displaystyle {\ce {BeO}}} i noBe2O3{\displaystyle {\ce {Be2O3}}} com se suposava.[9]

Elradi fou descobert l'any1898 perMarie Curie (1867–1934) i el seu maritPierre (1859–1906), a partir de lauraninita obtinguda d'una mina del nord deBohèmia, aTxèquia, que en conté al voltant d'1 g per cada 7 tones de mineral. Marie Curie i el químic francèsAndré-Louis Debierne (1874–1949) foren els primers a extreure radi pur l'any 1910 mitjançantelectròlisi d'una dissolució declorur de radiRaCl2{\displaystyle {\ce {RaCl2}}} i emprant uncàtode demercuri. L'amalgama obtinguda la destil·laren en atmosfera d'hidrogen i obtingueren el metall pur.[10]

Abundància

[modifica]
Aragonita, carbonat de calciCaCO3{\displaystyle {\ce {CaCO3}}}.
Cadena de desintegració de l'urani 238 on es genera elradi 226.

Els alcalinoterris es troben àmpliament distribuïts en minerals i a l'aigua de la mar. Hom els troba en grans dipòsits com ladolomita, constituïda pels carbonat de calci i magnesiCaMg(CO3)2{\displaystyle {\ce {CaMg(CO3)2}}}; en lacarnal·lita clorur de magnesi i potassiKMgCl36H2O{\displaystyle {\ce {KMgCl3.6H2O}}}; en labarita, sulfat de bariBaSO4{\displaystyle {\ce {BaSO4}}}, etc.[11] A l'escorça terrestre la concentració mitjana deberil·li és de 2,6ppm (2,6 mg/kg), essent el 47è element més abundant. Als sòls és un poc més abundant (6 ppm), a l'aigua de la mar és molt poc abundant, només 0,2 ppt (ng/L). Elmagnesi és el 7è element més abundant a l'escorça terrestre, de la qual constitueix el 2,3 %, la qual cosa equival a una concentració mitjana de 23 000 ppm o 23 g/kg. Als sòls només se'n troba una concentració mitjana de 5 ppm, mentres que a l'aigua de la mar és molt més abundant (1 200 ppm o 1,2 g/L). Elcalci constitueix el 4,1 % de l'escorça terrestre (concentració mitjana 41 000 ppm o 41 g/kg), la qual cosa el situa en la 5a posició en quan a abundància. En els sòls la concentració mitjana es troba entre l'1 % i el 2 %. A l'aigua de la mar la concentració mitjana és de 400 ppm. L'estronci ocupa la posició 16a en quan a abundància a l'escorça terrestre amb una concentració mitjana de 370 ppm. En els sòls la concentració mitjana és de 200 ppm, però pot variar entre 18 ppm i 3 500 ppm. A l'aigua de la mar se'n troba una concentració mitjana de 8 ppm. El bari és el 14è element en abundància a l'escorça terrestre amb una concentració mitjana de 500 ppm, la mateixa que es troba als sols. A l'oceà Atlàntic la concentració mitjana és de 10 ppb (μg/L) i alPacífic és del doble (20 ppb). El radi és molt poc abundant (0,6 ppt o 0,6 ng/kg), ocupant la posició 86a en quan a abundància a l'escorça terrestre. Als sol se'n detecta una concentració mitjana de 0,8 ppt i a l'aigua de la mar de 0,001 ppt.[12]

Tots els isòtops del radi són radioactius i es generen de forma natural en les diferentscadenes de desintegració. L'isòtop deperíode de semidesintegració més alt és elradi 226, que el té d'uns 1 600 anys. Aquest isòtop es forma en la sèrie natural de desintegració de l'urani 238 a partir deltori 230 per emissió d'unapartícula alfa. Després el radi 226 es desintegra en poloni 222 per emissió d'una altra partícula alfa:[11]

Th90230Ra88226+α{\displaystyle {\ce {_90^230Th -> _88^226Ra + \alpha}}}Ra88226Po86222+α{\displaystyle {\ce {_88^226Ra -> _86^222Po + \alpha}}}

Propietats

[modifica]

Propietats físiques

[modifica]
Beril·li
Magnesi

Els elements alcalinoterris són moltmetàl·lics i són bonsconductors de l'electricitat. Tenen una brillantor gris-blanc quan es tallen, però el perden fàcilment a l'aire, especialment els membres més pesats del grup en reaccionar amb l'oxigen de l'aire i oxidar-se. El beril·li és prou dur per ratllar el vidre, però el bari només és lleugerament més dur que el plom. Els punts de fusió i els punts d'ebullició del grup són superiors als delsmetalls alcalins situats a la seva esquerra a lataula periòdica; varien de manera irregular, tenint el magnesi els valors més baixos (650 °C i 1 090 °C) i el beril·li el més alt (1 287 °C i aproximadament 2 471 °C). Els elements cristal·litzen en una o més de les tres formes regulars de cristalls metàl·lics.[11]

Calci
Propietats dels elements del grup 5[13]
NomBeril·liMagnesiCalciEstronciBariRadi
Nombre atòmic41220385688
Massa atòmica relativa9,01224,3140,0887,62137,3(226)
Configuració electrònica[He]2s²[Ne]3s²[Ar]4s²[Kr]5s²[Xe]6s²[Rn]7s²
Punt de fusió (°C)1 287650842777727700
Punt d'ebullició (°C)2 4701 0901 4841 3821 8701 737
Densitat (g·cm−3 a 20 °C)1,8481,7381,552,633,515
AparençaArgentatBlanc

grisós

ArgentatArgentatArgentatArgentat
Radi atòmic (pm)105150180200215215
Energia d'ionització (eV)9,3237,6466,1135,6955,2125,278
Electronegativitat (Pauling)1,571,311,00,950,890,9

Propietats químiques

[modifica]
Espectre atòmic visible del beril·li
Espectre atòmic visible del magnesi
Espectre atòmic visible de l'estronci

Químicament, tots els alcalinoterris sónagents reductors forts. Elpotencials de reducció estàndard d'aquests elements són molt negatius, incrementant-se el valor negatiu en baixar en el grup del beril·li al radi: ε(Be2+/Be) = –1,847 V; ε(Mg2+/Mg) = –2,38 V; ε(Ca2+/Ca) = –2,686 V; ε(Sr2+/Sr) = –2,89 V; ε(Ra2+/Ra) = –2,916.[14] Els metalls lliures són solubles enamoníac líquid, les solucions blau fosc de calci, estronci i bari desperten un interès considerable perquè es creu que contenen ions metàl·lics i les espècies més inusuals, electrons solvats o electrons resultants de la interacció del metall i el dissolvent. Les solucions molt concentrades d'aquests elements tenen un aspecte metàl·lic, semblant alcoure, i una evaporació addicional produeix residus que contenen amoníac (amoniats), que corresponen a la fórmula generalM(NH3)6{\displaystyle {\ce {M(NH3)6}}}. Amb el temps, els amoniats es descomponen formant lesamides,M(NH2)2{\displaystyle {\ce {M(NH2)2}}}. Les solucions són forts agents reductors i són útils en diversos processos químics.[11]

Espectre atòmic visible del calci
Espectre atòmic visible del bari
Espectre atòmic visible del radi

Tots els àtoms dels elements alcalinoterris tenenestructures electròniques similars, que consisteixen en un parell d'electrons en un orbitals, el més exterior, dins del qual hi ha una configuració electrònica estable que correspon a la d'ungas noble. L'estronci té la configuració1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s², que es pot escriure com[Kr] 5s². De la mateixa manera, el beril·li es pot designar com[He] 2s², el magnesi com[Ne] 3s², el calci com[Ar] 4s², el bari com[Xe] 6s² i el radi com[Rn] 7s². Les línies destacades en elsespectres atòmics dels elements, obtingudes quan s'escalfen els elements en determinades condicions, sorgeixen d'estats de l'àtom en què un dels dos electronss ha estat promogut a un orbital d'energia superior.[15]

Els electronss s'eliminen fàcilment i aquestaionització és el tret característic de la química dels alcalinoterris. L'energia d'ionització (l'energia necessària per treure un electró de l'àtom) cau contínuament en la sèrie del beril·li (9,32 eV) al bari (5,21 eV); el radi, el més pesant del grup, té una energia d'ionització una mica superior (5,28 eV). Les petites irregularitats observades en el canvi d'una altra manera suau a mesura que avança pel grup tal com apareix a lataula periòdica s'expliquen per l'ompliment desigual de closques d'electrons a les files successives de la taula. Els electronss també poden ser promoguts a orbitalsp del mateix nombre quàntic principal (dins de la mateixa capa) per energies similars a les necessàries per formar enllaços químics; els àtoms més lleugers són, per tant, capaços de formar estructures estables d'unió covalent, a diferència de l'heli, que té la configuració electrònica d'altra banda anàloga de1s².[15]

Composts iònics amb estat d'oxidació +2

[modifica]
Estructura cristal·lina del clorur de calci. En verd els anions clorur i en blanc els cations calci(2+).

En la majoria dels casos, la química d'aquests elements està dominada per la formació i propietats dels cationsM2+{\displaystyle {\ce {M^2+}}}, en què els electrons més externs han estat eliminats de l'àtom de metall. El catió resultant s'estabilitza per interacció electroestàtica amb un dissolvent, com l'aigua, que té unaconstant dielèctrica elevada i una gran capacitat d'absorció de càrrega elèctrica, per exemple formant cations[Mg(H2O)6]2+{\displaystyle {\ce {[Mg(H2O)6]^2+}}}; o per combinació amb anions en unaxarxa iònica com es troba a lessals,hidròxids, hidrurs... L'energia addicional necessària per eliminar l'electró del segons (la segona energia d'ionització és aproximadament el doble del primer) es compensa amb escreix amb l'energia d'unió addicional present en l'ió doblement carregat. No obstant això, l'eliminació d'un tercer electró d'un àtom alcalinoterri requeriria una despesa d'energia superior a la que es podria recuperar de qualsevol entorn químic conegut. Com a resultat, els metalls alcalinoterriss presenten unestat d'oxidació no superior a +2 en els seus compostos.[15]

Com correspon a la mida creixent dels seus nuclis interns, els radis dels cations dels elements alcalinoterris augmenten constantment a partir delBe2+{\displaystyle {\ce {Be^2+}}}, que té un radi de 0,27 Å (1 Å = 10−10 m) per a unnombre de coordinació de 4 (és a dir, amb quatre ions o altres molècules lligades a ell), alRa2+{\displaystyle {\ce {Ra^2+}}}, amb un radi d'1,48 Å i un nombre de coordinació de 8.[15]

Composts covalents i amb estat d'oxidació +1

[modifica]
Molècula de clorur de beril·liBeCl2{\displaystyle {\ce {BeCl2}}}

La química dels metalls alcalinoterreis, com la delsmetalls alcalins, s'interpreta en la seva major part de manera raonable en termes d'un model iònic per als compostos formats. Aquest model és menys satisfactori per a la química delberil·li i elmagnesi que per als metalls alcalinoterris més pesants. De fet, la majoria dels compostos de beril·li són moleculars (covalents) en lloc d'iònics. Això és una conseqüència de l'elevada relació càrrega-mida de l'ió Be2+, que polaritza fortament els enllaços amb ell.[15]

Les proves sobre compostos metàl·lics alcalinoterris amb unestat d'oxidació inferior (+1) foren controvertides durant molts anys. Algunes investigacions datades dels anys cinquanta dels halurs "MX" (per exemple, CaCl, SrBr) que eren estables a temperatura ambient es demostraren més tard com a error, ja que els compostos eren en realitat halurs d'hidrurs metàl·lics, MHX. Posteriorment s'establiren exemples genuïns de compostos alcalinoterris amb metalls en estat d'oxidació +1, però es limitaren a espècies que es formaren en fase gasosa, com ara el radical metil estronciSrCH3{\displaystyle {\ce {.SrCH3}}} o es van estabilitzar a temperatures extremadament baixes. condicions, com el subhalur de magnesiMgCl{\displaystyle {\ce {MgCl}}}, que pot quedar atrapat en una matriu de gas congelat a –261 °C. Ara es coneix un nombre reduït de compostos de coordinació amb la fórmulaLMgMgL{\displaystyle {\ce {LMg-MgL}}}, en la qualL{\displaystyle {\ce {L}}} és un lligantquelant i aniónic. Els compostos contenen magnesi enllaçat covalentment en una unitat[Mg2]2+{\displaystyle {\ce {[Mg2]^2+}}}, coordinada iònicament amb els lligands. Tot i que els centres metàl·lics estan formalment en estat d'oxidació +1, també es poden descriure com a divalents, atès que els dos electrons de valència dels centres metàl·lics estan implicats en l'enllaç (un a l'altre metall, per formar l'enllaçMM{\displaystyle {\ce {M-M}}}, i l'altra al lligandL{\displaystyle {\ce {L}}}).[15]

Des de la dècada de 1960, hi ha hagut proves que els membres més pesants dels alcalinoterris (calci, estronci i bari) presenten característiques estructurals que no són consistents amb l'enllaç purament iònic. Les mesures de feix molecular han demostrat que els dihalurs dels alcalinoterris gasosos (MF2(M=Ca,Sr,Ba){\displaystyle {\ce {MF2 (M = Ca, Sr, Ba)}}},MCl2(M=Sr,Ba){\displaystyle {\ce {MCl2 (M = Sr, Ba)}}} iBaI2{\displaystyle {\ce {BaI2}}}) són no lineals. També hi ha compostos organometàl·lics amb anells ciclopentadienil (Cp{\displaystyle {\ce {Cp}}}) o lligands alquil (R{\displaystyle {\ce {R}}}) que no tenen les estructures lineals esperades deCpMCp{\displaystyle {\ce {Cp-M-Cp}}} oRMR{\displaystyle {\ce {R-M-R}}}. Una explicació suggerida per a la flexió d'aquests compostos és que el “semi-nucli”(n-1)p i els orbitals de valència(n-1)d dels alcalinoterris més pesants estan implicats en l'enllaç (per al calci, aquest significa els orbitals3p i3d; per a l'estronci, el4p i el4d; per al bari, el5p i el5d). Les funcions d'ona d'aquests orbitals es poden barrejar en el procés d'unió, donant lloc a geometries no lineals. Aquesta interpretació es recolza en càlculs, que han d'incloure explícitament la participació dels orbitals metàl·lics per reproduir les estructures doblegades.[15]

Estructura de laclorofil·la a on el catióMg2+{\displaystyle {\ce {Mg^2+}}} es troba coordinat amb quatre nitrògens

D'acord amb el seu caràcter electropositiu, es considera que els alcalinoterris formen ions "durs" i, per tant, s'uneixen preferentment a lligands amb àtoms de donant dur comoxigen,nitrogen ofluor. Els cations dels alcalinoterris s'hidraten fàcilment i el nombre de molècules d'aigua directament unides a un catió metàl·lic és major amb els ions més grossos per raons purament estèriques (geomètriques) (típicament 4, 6 i 6-8 per aBe2+{\displaystyle {\ce {Be^2+}}},Mg2+{\displaystyle {\ce {Mg^2+}}} iCa2+{\displaystyle {\ce {Ca^2+}}}, respectivament). No obstant això, la força d'unió a les molècules d'aigua disminueix amb l'augment delradi iònic. Els anions grans, com elsulfat, tendeixen a formar complexos febles de parells d'ions més fàcilment amb els ions metàl·lics més grossos de la família, però els anions àcids febles, com l'acetat, tendeixen a formar complexos més forts amb els ions metàl·lics més petits, particularment els de magnesi i beril·li. Que molts d'aquests complexos són moleculars i no iònics es demostra per la seva extreta preparació d'una solució aquosa (que dissol preferentment substàncies iòniques) en dissolvents orgànics (que dissolen els moleculars).

Semblances amb altres elements

[modifica]

Elzinc, elcadmi i elmercuri, elselements del grup 12, es comparen sovint amb els elements alcalinoterris calci, estronci i bari. El cadmi, per exemple, té la configuració electrònica [Kr]4d¹⁰5s², amb els 10 electrons4d que pràcticament no participen en l'enllaç químic. No obstant això, els electrons5s² estan ionitzats molt menys en cadmi que en estronci, ja que els electrons 4d actuen com un escut ineficaç per a la càrrega augmentada corresponent al nucli de cadmi. Per tant, la química dels metalls del grup 12 és sensiblement menys iònica que la química dels metalls alcalinoterris. El radi iònic de l'ió cadmi Cd2+ (0,95 Å) és molt similar al del calci Ca2+ (1,00 Å). Per tant, una comparació quantitativa de la química del cadmi i el calci mostra clarament el caràcter menys iònic de la química del cadmi sense complicacions a causa de les diferències de mida iònica.

Hi ha paral·lelismes químics una mica més estrets entre els alcalinoterris més pesants i elslantanoides que tenenestats d'oxidació +2 fàcilment accessibles, i que són l'itterbi, elsamari i l'europi. Els radis iònics de Ca2+ (1,00 Å) i Yb2+ (1,02 Å) són similars, igual que els de Sr2+ (1,18 Å) i Sm2+ (1,19 Å) o Eu2+ (1,17 Å). La inaccessibilitat química dels electrons4f dels elements de les terres rares significa que la seva unió és iònica de la mateixa manera que la dels alcalinoterris. Això es reflecteix en la suma de les dues primeresenergies d'ionització: calci (17,98 eV) i itterbi (18,43 eV); estronci (16,73 eV) i samari (16,7 eV) i europi (16,91 eV). Això significa que els ions Eu2+, per exemple, de vegades es poden utilitzar com a “sonda” dels metalls alcalinoterris, substituint els ions d'estronci en situacions en què es pot aprofitar les propietats espectroscòpiques i magnètiques que fan que el Eu2+ sigui fàcilment identificable. Els paral·lelismes entre els metalls alcalinoterris i els lantanoides s'estenen també a la reactivitat; aquests últims reaccionen amb l'aigua per alliberar hidrogen, per exemple, i es dissolen en amoníac líquid per produir solucions blaves anàlogues a les dels metalls alcalinoterris.

Aplicacions

[modifica]

Beril·li

[modifica]
Varetes de control d'un reactor nuclear

Per la seva lleugeresa i resistència, el beril·li s'utilitza en laindústria aeroespacial, tant en la fabricació d'avions com desatèl·lits. El beril·li s'afegeix als aliatges de coure i alumini per a augmentar-ne la resistència i allargar-ne la vida útil. Els aliatges de beril·li i coure són tan resistents com elsacers i no produeixen guspires si hi ha fricció. S'usen en la fabricació de maquinària que està en contacte amb fluids o gasos inflamables. El beril·li és un dels components de lesbarres de control dels reactors de lescentrals nuclears. Gràcies a la seva lleugeresa i resistència s'utilitza en la fabricació d'equips de precisió comgiroscopis, suports d'equips òptics i equips informàtics. L'òxid de beril·li s'usa com a aïllament elèctric i també com a dissipador tèrmic, per exemple, en les plaques base aïllants de transistors d'alta potència, en les telecomunicacions.[16]

Magnesi

[modifica]
Xassís d'unacàmera de fotos realitzada amb un aliatge de magnesi

La principal aplicació del magnesi és la fabricació d'aliatges amb l'alumini. Lesllandes d'aliatge dels automòbils estan fabricades amb magnesi o amb una combinació de magnesi i alumini; el magnesi proporciona més resistència i ajuda a dissipar la calor produïda pel sistema de frenada dels vehicles. També s'utilitza en la fabricació dellaunes de begudes. El magnesi forma part dels aliatges que s'empren en la fabricació de bicicletes molt lleugeres. L'aliatge elektron ZRE1 combina el magnesi amb el zirconi, el zinc i les terres rares, i el resultat és un producte resistent amb el qual es pot treballar a més de 150 °C per a fabricar peces d'helicòpters tipusEurocopter i de tota la indústria aeroespacial. El magnesi s'utilitza en la fabricació de xassís per a telèfons mòbils, ordinadors, càmeres, maquinetes de fer punta, etc., gràcies a la seva lleugeresa i a les bones propietats mecàniques que posseeix. L'òxid de magnesi s'usa com a material refractari en els forns siderúrgics per a la producció d'acers, metalls no ferrosos, vidre i ciment. El magnesi és fonamental per a les plantes (és el metall central de la clorofil·la), per als animals i per a la recuperació de sòls contaminats. Elcarbonat de magnesi en pols és utilitzat com a dessecant pels atletes i gimnastes per a millorar l'adherència als objectes. Elferroceri és un material de ferro, magnesi, ceri, lantani, neodimi i praseodimi, utilitzat en la fabricació de pedres d'encenedor. En forma d'encenalls i en pols, el magnesi és molt inflamable i explosiu; produeix una forta llum blanca i un gran soroll, raó per la qual s'utilitza en els focs d'artifici.[16]

Calci

[modifica]
Pastilles antiàcid

Elcarbonat de calci s'utilitza en la fabricació de ciment, i el de molta puresa, com a complement alimentari per a les gallines ponedores. Aquest compost també és un additiu en la producció decautxú, al qual aporta elasticitat, junt amb elsulfat de bari. Elsulfat de calci (guix) s'utilitza en el revestiment de parets en la construcció i entraumatologia. Elcarbur de calci és la matèria primera per a la fabricació d'acetilè. L'hipoclorit de calci s'utilitza com adesinfectant d'aigües, com a agent blanquejant i com adesodorant. Elfosfat de calci s'utilitza en la producció defertilitzants i en la producció depinsos per a animals. El carbonat de calci s'utilitza com aantiàcid, per tal de neutralitzar l'excés d'àcid clorhídric a l'estómac. També és el suplement dietètic de calci més important i barat. Lahidroxiapatita, que és un fosfat de calci, és un medicament que s'empra per a enfortir l'esmalt de les dents i dels ossos i en el tractament de l'osteoporosi. El carbonat de calci s'utilitza en la fabricació de guixos per a les pissarres de les escoles.[16]

Estronci

[modifica]
El color vermell delsfocs d'artifici s'aconsegueixen amb sals d'estronci; i el verd amb sulfat de bari.

Els compostos d'estronci s'utilitzen com a pigment vermell en la fabricació defocs d'artifici i enbengales de senyalització d'emergències. L'estronci s'utilitza en la producció electrolítica dezinc, ja que elimina les impureses deplom contingudes en el mineral. també s'empra per millorar les propietats del vidre per a lespantalles de cristall líquid (LCD) i en la fabricació d'imants ceràmics de ferrita per a millorar-ne l'eficàcia (aquests imants s'empren en motors elèctrics d'automòbils, altaveus, etc.). Elcarbonat d'estronciSrCO3{\displaystyle {\ce {SrCO3}}} s'empra per a eliminar els sulfats en el tractament de lesaigües residuals; s'afegeix al vidre per a millorar-ne la duresa, la resistència a les ratllades, augmentar-ne la lluïssor i la facilitat de poliment; s'utilitza en l'esmaltatge de la ceràmica per a les vaixelles per a millorar la resistència a l'abrasió i evitar la formació de bombolles durant el procés de cocció de la ceràmica.[16]

Bari

[modifica]
Llum emesa pelradi i elsulfur de zinc després de ser excitat mitjançant llum ultraviolada

En elprocediment mèdic anomenatènema de bari, que s'empra per a examinar la part inferior de l'aparell digestiu, al pacient se li administra un líquid amb sulfat de bariBaSO4{\displaystyle {\ce {BaSO4}}} que recobreix la capa interior de l'intestí i s'utilitza com a agent decontrast radiològic. Durant laradiografia, el revestiment de sulfat de bari absorbeix bona part delsraigs X i posa de manifest les zones lesionades. També s'empra com a additiu en l'elaboració de cautxú (guants, joguines, pneumàtics i gomes d'esborrar) per a augmentar-ne l'elasticitat; en la producció de llots de perforació per a lubricar l'eina de perforació i millorar la sostenibilitat de les parets dels pous d'extracció de petroli, gas i aigua; és un dels components del litopó (blanc de zinc), un pigment blanc que s'utilitza en pintures i esmalts per a obtenir recobriments que no s'enfosqueixin en contacte amb sulfurs; s'utilitza en la producció de paper-cartolina perquè hi aporta resistència i densitat, i també es fa servir en la fabricació de pintures; s'empra com a additiu en la preparació de formigons baritats, que s'empren en la construcció dels murs i laberints delsacceleradors lineals, per a evitar la fuga de radiacions. També aporta el color verd als focs d'artifici i les bengales. El carbonat de bariBaCO3{\displaystyle {\ce {BaCO3}}} s'utilitza en la fabricació del vidre, ja que n'augmenta l'índex de refracció i la lluïssor.[16]

Radi

[modifica]

Els pocs usos del radi deriven de les seves propietats radioactives per al tractament delcàncer. Tot i això, radioisòtops com el cobalt 60 i el cesi 137 l'han anat substituint, ja que són més potents i més fàcils de manipular que el radi. S'utilitza l'isòtop radi 223 per al tractament de càncers de pròstata quan s'han estès als ossos. Mitjançant la mescla de radi ambsulfur de zinc fosforescent s'obtenen pintures lluminoses que produeixen una feble llum verdosa en la foscor i que s'empraven en pantalles lluminoses de rellotges, interruptors, panells, etc. Avui dia ja no s'utilitzen. El radi té un ús limitat. La principal aplicació és la preparació de gasradó en els laboratoris de recerca.[16]

Referències

[modifica]
  1. Homberg, W. «Observations sur la quantité d'acides absorbées par les alcalis terreux». Histoire de l'Académie Royale des Sciences, 10-02-1700, pàg. 64-71.
  2. «Terra».Diccionari de la llengua catalana de l'IEC. Institut d'Estudis Catalans.
  3. «Barium | chemical element» (en anglès). Encyclopædia Britannica. Encyclopædia Britannica, inc., 24-01-2018. [Consulta: 6 març 2020].
  4. Challoner, Jack.Los elementos. La nueva guía de los componentes básicos del universo. (en castellà). Alcobendas: Libsa, 2018, p. 36.ISBN 9788466236669. 
  5. 5,05,1Emsley, John..Nature's building blocks : an A-Z guide to the elements. Oxford: Oxford University Press, 2001.ISBN 0-19-850341-5. 
  6. 6,06,16,2Grew, E. S. «Mineralogy, Petrology and Geochemistry of Beryllium: An Introduction and List of Beryllium Minerals» (en anglès). Reviews in Mineralogy and Geochemistry, 50, 1, 01-01-2002, pàg. 1–76.DOI:10.2138/rmg.2202.50.01.ISSN:1529-6466.
  7. 7,07,1Vauquelin, L.N. «De l'Aiguemarine, ou Béril; et découverie d'une terre nouvelle dans cette pierre"». Annales de Chimie, 26, 1798, pàg. 155–169.
  8. Grew, Edward S. «Mineralogy, Petrology and Geochemistry of Beryllium: An Introduction and List of Beryllium Minerals» (en anglès). Reviews in Mineralogy and Geochemistry, 50, 1, 01-01-2002, pàg. 1–76.DOI:10.2138/rmg.2202.50.01.ISSN:1529-6466.
  9. «Avdeev, Ivan». The Great Soviet Encyclopedia, 3rd Edition, 1970-1979. [Consulta: 11 desembre 2020].
  10. William M. Haynes.CRC handbook of chemistry and physics (en anglès). 96a edició. Boca Raton: CRC Press, 2015.ISBN 978-1-4822-6097-7. 
  11. 11,011,111,211,3Cotton, F.A.; Wilkinson, G.Quimica inorganica avanzada. México: Limusa, 1999.ISBN 968-18-1795-8. 
  12. Emsley, John.Nature's Building Blocks : an a-Z Guide to the Elements.. 2a edició. Oxford: Oxford University Press, Incorporated, 2011.ISBN 978-0-19-257046-8. 
  13. William M. Haynes.CRC handbook of chemistry and physics (en anglès). 96a edició. Boca Raton: CRC Press, 2015.ISBN 978-1-4822-6097-7. 
  14. M., Haynes, William.CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data.. 93. Boca Raton: CRC Press, 2012.ISBN 978-1-4398-8049-4. 
  15. 15,015,115,215,315,415,515,6Hanusa, T.P.;Phillips, C.S.G. «Alkaline-earth metal». Encyclopedia Britannica, 10-11-2020. [Consulta: 20 setembre 2021].
  16. 16,016,116,216,316,416,5Sanz Balagué, J.; Tomasa Guix, O.Elements i recursos minerals : aplicacions i reciclatge. 3a. Iniciativa Digital Politècnica, 2017.ISBN 978-84-9880-666-3. 
AWikimedia Commons hi ha contingut multimèdia relatiu a:Alcalinoterri

Elements químics

Taula periòdica |Nom |Símbol atòmic |Nombre atòmic
Grups:   1 -  2 -  3 -  4 -  5 -  6 -  7 -  8 -  9 -10 -11 -12 -13 -14 -15 -16 -17 -18
Períodes:  1  -  2  -  3  -  4  -  5  -  6  -  7
Sèries:    Actinoides  - Lantanoides  -  Metalls de transició  -  Metalls del bloc p  -  Semimetalls  -  No-metalls  -  Terres rares  -  Transurànids
Blocs: bloc s  -  bloc p  -  bloc d  -  bloc f  -  bloc g
Registres d'autoritat
Bases d'informació
Obtingut de «https://ca.wikipedia.org/w/index.php?title=Alcalinoterri&oldid=36522876»
Categoria:
Categories ocultes:

[8]ページ先頭

©2009-2025 Movatter.jp