Movatterモバイル変換


[0]ホーム

URL:


MetaX Cookbook

This is the guidebook for the MetaXGUI Version. If you are using the CLI to analyze, We recommend that you read thedocumentation for each MetaX module for instructions on how to use it from the command line.

Overview

MetaX is a novel tool for linking peptide sequences with taxonomic and functional information inMetaproteomics. We introduce theOperational Taxon-Function (OTF) concept to explore microbial roles and interactions ("who is doing what and how") within ecosystems.

MetaX also featuresstatistical modules andplotting tools for analyzing peptides, taxa, functions, proteins, and taxon-function contributions across groups.

abstract

Project Page

VisitGitHub to get more information:

https://github.com/byemaxx/MetaX

Getting Started

main_window

tools_menu


Exploring Data with MetaX

See thePreparing Your Data section to build the database and annotate peptides to OTFs before starting.

Module 1. OTF Analyzer

After obtaining theOperational Taxa-Functions (OTF) Table using thePeptide Annotator, you can perform downstream analysis with theOTF Analyzer.

1. Data Preparation

OTFs (Operational Taxa-Functions) Table: Obtained from thePeptide Annotator module.

Meta Table: The first column is sample names, and the other columns represent different groups. If no meta table is provided, meta info will be generated automatically: (1) all samples are in the same group; (2) each sample is a separate group.

Example Meta Table:

samplesIndividualsTreatmentSweetener
sample_1V1TreatmentXYL
sample_2V1TreatmentXYL
sample_3V1TreatmentXYL
sample_4V1ControlPBS
sample_5V1ControlPBS
sample_6V1ControlPBS

You can load example data byclicking the button.

load_example

Then, clickGo to start the analysis.

2. Data Overview

The Data Overview provides basic information about your data, such as the number of taxa, functions, and proportions.

data_overview

data_overview_func

data_overview_filter

3. Set TaxaFunc

set_multi_table

Data Selection

FUNC_prop

Sum Proteins Intensity

ClickCreate Proteins Intensity Table to sum peptides to proteins if the Protein column is in the original table.

Data preprocessing

There are several methods for detecting and handling outliers.

In all methods, You can choose detection outliers by a meta column, and a meta to handle the outliers.

You can choose the outliers Imputation byeach group or byall samples.

If you use [Z-Score, Mean centring and Pareto Scaling] data normalization, the data will be given a minimum offset again to avoid negative values.

Then, click Go to create a TaxaFunc object for analysis.

TaxaFunc_ready

Then we can check tables inTable Review part, and export it.

table_review

table_review_open_window

4. Basic Stats

PCA, Correlation and Box Plot

basic_stats_pca

We can selectmetagroups orsamples (default all) to plotPCA,Correlation, andBox Plot for[Taxa, Function, Taxa-Func, Peptide table, Protein table]

pca

pca_3d

correlation

boxplot

basic_number

Heatmap and Bar Plot

add_to_list

add_top_list

add_a_list

heatmap_original

basic_stats_bar

basic_stats_bar_setting

Peptide Query

peptide_query

5. Cross Test

T-TEST

t_test

ANOVA-TEST

anova_test

Significant Taxa-Func

Plot Corss Heatmap

t_test_res

corss_heatmap_setting

corss_heatmap

t_test_heatmap

Group-Control TEST

Set a Group as"Control", then compare all groups to Control

Bingo! You noticed the hidden function of MetaX, clickHelp -> About -> Like 3 times to unlock the function to compare all groups to control.

DESeq2

(Ultra-Up(Down): |log2FC| > Max log2FC)

TUKEY_TEST

tukey_test

taxa_func_linked_only

tukey_plot

6. Expression Analysis

Co-Expression Networks & Heatmap

image-20230728142905839

image-20230728143058568

co_network_pic

Expression Trends

7. Taxa-Func Link

Taxa-Func Link Plot

image-20230728152236517

image-20230728150853953

bar_switch_satck

bar_to_line

Taxa-Func Network

taxa_func_network

8. Restore Last TaxaFunc Object

Preparing Your Data

Module 2. Database Builder

Note: The results fromMetaLab v2.3 MaxQuant workflow do not require database building. However, we do not recommend using these results as input to MetaX, as many peptides may be discarded.

Option 1: Build Database Using MGnify Data

Ensure you download the correct database type corresponding to your data.

dbbuilder

Option 2: Build Database Using Own Data

  1. Annotation Table: A TSV table (tab-separated), with the first column as protein name joined with Genome by "_", e.g., "Genome1_protein1", and other columns containing annotation information.

dbbuilder_own

  1. Taxa Table: A TSV table (tab-separated), with the first column as Genome name, e.g., "Genome1", and the second column as taxa.

Example Annotation Table:

QueryPreferred_nameECKEGG_ko
MGYG000000001_00696mfd-ko:K03723
MGYG000000001_02838hxlR--
MGYG000000001_01674ispG1.17.7.1,1.17.7.3ko:K03526
MGYG000000001_02710glsA3.5.1.2ko:K01425
MGYG000000001_01356mutS2-ko:K07456
MGYG000000001_02630---
MGYG000000001_02418ackA2.7.2.1ko:K00925
MGYG000000001_00728atpA3.6.3.14ko:K02111
MGYG000000001_00695pth3.1.1.29ko:K01056
MGYG000000001_02907--ko:K03086
MGYG000000001_02592rplC-ko:K02906
MGYG000000001_00137--ko:K03480,ko:K03488

Example Taxa Table:

GenomeLineage
MGYG000000001d_Bacteria;p_Firmicutes_A;c_Clostridia;o_Peptostreptococcales;f_Peptostreptococcaceae;g_GCA-900066495;s_GCA-900066495 sp902362365
MGYG000000002d_Bacteria;p_Firmicutes_A;c_Clostridia;o_Lachnospirales;f_Lachnospiraceae;g_Blautia_A;s_Blautia_A faecis
MGYG000000003d_Bacteria;p_Bacteroidota;c_Bacteroidia;o_Bacteroidales;f_Rikenellaceae;g_Alistipes;s_Alistipes shahii
MGYG000000004d_Bacteria;p_Firmicutes_A;c_Clostridia;o_Oscillospirales;f_Ruminococcaceae;g_Anaerotruncus;s_Anaerotruncus colihominis
MGYG000000005d_Bacteria;p_Firmicutes_A;c_Clostridia;o_Peptostreptococcales;f_Peptostreptococcaceae;g_Terrisporobacter;s_Terrisporobacter glycolicus_A
MGYG000000006d_Bacteria;p_Firmicutes;c_Bacilli;o_Staphylococcales;f_Staphylococcaceae;g_Staphylococcus;s_Staphylococcus xylosus
MGYG000000007d_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;s_Lactobacillus intestinalis
MGYG000000008d_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;s_Lactobacillus johnsonii
MGYG000000009d_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Ligilactobacillus;s_Ligilactobacillus murinus

Module 3. Database Updater

TheDatabase Updater allows updating the database built by theDatabase Builder or adding more annotations. This step isoptional.

db_updater

Option 1: Built-in Mode

We recommend some extended databases, such asdbCAN_seq.

Option 2: TSV Table

Extend the database by adding a new database to the database table. Ensure the column separator is a tab and the first column is the Protein name, with other columns containing function annotations.

Example:

Protein IDCOGKEGG...
MGYG000000001_02630Function 1Function 1...
MGYG000000001_01475Function 2Function 1...
MGYG000000001_01539Function 3Function 1...

Module 4. Peptide Annotator

1. Results from MAG Workflow

The peptide results use Metagenome-assembled genomes (MAGs) as the reference database for protein searches, e.g., MetaLab-MAG, MetaLab-DIA and other workflows wich using MAG databases like MGnify or customized MAGs Database.

peptide2taxafunc

Required:

2. Results from MaxQuant Workflow

The peptide results fromMetaLab 2.3 MaxQuant workflow.

peptide2taxafunc_tab2_1

peptide2taxafunc_tab2_2


Developer Tools

Enjoy MetaX

If you have any issues or suggestions, please New issue in myGitHub.


[8]ページ先頭

©2009-2025 Movatter.jp