Movatterモバイル変換


[0]ホーム

URL:


homepage

Message339544

This issue trackerhas been migrated toGitHub, and is currentlyread-only.
For more information, see the GitHub FAQs in the Python's Developer Guide.

Authorrhettinger
Recipientsrhettinger
Date2019-04-06.21:22:16
SpamBayes Score-1.0
Marked as misclassifiedYes
Message-id<1554585736.61.0.903931747573.issue36546@roundup.psfhosted.org>
In-reply-to
Content
It is a common and useful data analysis technique to examine quartiles, deciles, and percentiles. It is especially helpful for comparing distinct datasets (heights of boys versus heights of girls) or for comparing against a reference distribution (empirical data versus a normal distribution for example).--- sample session --->>> from statistics import NormalDist, quantiles>>> from pylab import plot# SAT exam scores>>> sat = NormalDist(1060, 195)>>> list(map(round, quantiles(sat, n=4)))       # quartiles[928, 1060, 1192]>>> list(map(round, quantiles(sat, n=10)))      # deciles[810, 896, 958, 1011, 1060, 1109, 1162, 1224, 1310]# Summarize a dataset>>> data = [110, 96, 155, 87, 98, 82, 156, 88, 172, 102, 91, 184, 105, 114, 104]>>> quantiles(data, n=2)                        # median[104.0]>>> quantiles(data, n=4)                        # quartiles[91.0, 104.0, 155.0]>>> quantiles(data, n=10)                       # deciles[85.0, 88.6, 95.0, 99.6, 104.0, 108.0, 122.2, 155.8, 176.8]# Assess when data is normally distributed by comparing quantiles>>> reference_dist = NormalDist.from_samples(data)>>> quantiles(reference_dist, n=4)[93.81594518619364, 116.26666666666667, 138.71738814713967]# Make a QQ plot to visualize how well the data matches a normal distribution# plot(quantiles(data, n=7), quantiles(reference_dist, n=7))
History
DateUserActionArgs
2019-04-06 21:22:16rhettingersetrecipients: +rhettinger
2019-04-06 21:22:16rhettingersetmessageid: <1554585736.61.0.903931747573.issue36546@roundup.psfhosted.org>
2019-04-06 21:22:16rhettingerlinkissue36546 messages
2019-04-06 21:22:16rhettingercreate
Supported byThe Python Software Foundation,
Powered byRoundup
Copyright © 1990-2022,Python Software Foundation
Legal Statements

[8]ページ先頭

©2009-2026 Movatter.jp