নিউক্লিয়াসের রাসায়নিক এবং পারমাণবিক বৈশিষ্ট্যগুলি প্রোটনের সংখ্যা দ্বারা নির্ধারিত হয়, যাকে বলা হয়পারমাণবিক সংখ্যা, এবং নিউক্লিয়াসে নিউট্রনের সংখ্যাকে,নিউট্রন সংখ্যা বলা হয়।আণবিক ভর সংখ্যা হল এই দুটি নিউক্লিয়নের মোট সংখ্যা। উদাহরণ স্বরূপ,কার্বনের এর পারমাণবিক সংখ্যা হল ৬, এবং যেটি প্রচুর পরিমাণে পাওয়া যায়, সেইকার্বন-১২ সমস্থানিকটিতে (আইসোটোপ) ৬ টি নিউট্রন রয়েছে, যদিও এর বিরলকার্বন-১৩ সমস্থানিকে ৭ টি নিউট্রন রয়েছে। প্রকৃতিতে কিছু উপাদানের কেবলমাত্র একটিস্থিতিশীল সমস্থানিক থাকে, যেমনফ্লোরিন। অন্যান্য অনেক উপাদানের অনেক স্থিতিশীল সমস্থানিক আছে, উদাহরণস্বরূপটিনের দশটি স্থিতিশীল সমস্থানিক আছে।নিউক্লিয়াসের মধ্যে, প্রোটন এবং নিউট্রনগুলিনিউক্লীয় বল দ্বারা একত্রে আবদ্ধ থাকে। নিউক্লিয়াসের স্থিতিশীলতার জন্য নিউট্রন প্রয়োজন, এর একটিমাত্র ব্যতিক্রম হল একক প্রোটনহাইড্রোজেন পরমাণু। নিউট্রনগুলিকেন্দ্রীণ বিদারণ এবংসংযোজনের সময় প্রচুর পরিমাণে উৎপাদিত হয়।তারার মধ্যে রাসায়নিক উপাদানেরকেন্দ্রীন সংশ্লেষের জন্য তারা প্রধান অবদান, এবং সেটি ঘটে কেন্দ্রীণ বিদারণ, কেন্দ্রীণ সংযোজন, এবংনিউট্রন ক্যাপচার (একটি পারমাণবিক প্রতিক্রিয়া) পদ্ধতির মাধ্যমে।
নিউট্রন পারমাণবিক শক্তি উৎপাদনের জন্য প্রয়োজনীয়। ১৯৩২ সালেজেমস চ্যাডউইক নিউট্রন আবিষ্কার করার দশকে,[৪] নিউট্রনগুলি বিভিন্ন ধরনেরনিউক্লীয় সংক্রমণ (রাসায়নিক উপাদানের রূপান্তর) শুরু করার জন্য ব্যবহৃত হত। ১৯৩৮ সালেকেন্দ্রীণ বিদারণ আবিষ্কার হবার পর,[৫] দ্রুত উপলব্ধি করা গিয়েছিল যে, যদি বিদারণ পদ্ধতিতে নিউট্রন উৎপাদিত হয়, এই নিউট্রনগুলির প্রতিটিনিউক্লীয় চেইন প্রতিক্রিয়ায় আরও বিদারণ ঘটাতে পারবে।[৬] এই ঘটনা এবং অনুসন্ধানগুলির ফলে বিজ্ঞান প্রথম স্বনির্ভরপারমাণবিক চুল্লি (শিকাগো পাইল-১, ১৯৪২, প্রথম কৃত্রিম পারমাণবিক চুল্লি) এবং প্রথমপারমাণবিক অস্ত্রের (ত্রিনিতি, ১৯৪৫) দিকে অগ্রসর হয়।
একটিপারমাণবিক নিউক্লিয়াস অনেকগুলিপ্রোটন (যাকে প্রকাশ করা হয়Z অক্ষর দিয়ে,পারমাণবিক সংখ্যা) এবং অনেকগুলি নিউট্রন দিয়ে (যাকে প্রকাশ করা হয়N অক্ষর দিয়ে,নিউট্রন সংখ্যা) গঠিত হয়,নিউক্লীয় বল দ্বারা এরা সংযুক্ত থাকে। পারমাণবিক সংখ্যাটি পরমাণুররাসায়নিক বৈশিষ্ট্য সংজ্ঞায়িত করে, এবং নিউট্রন সংখ্যা দিয়ে নির্ধারিত হয়সমস্থানিক বানিউক্লাইড।[৬] সমস্থানিক এবং নিউক্লাইড শব্দদুটি প্রায়শইপ্রতিশব্দের মত ব্যবহৃত হয়, কিন্তু তারা যথাক্রমে রাসায়নিক এবং পারমাণবিক বৈশিষ্ট্যগুলি উল্লেখ করে। সঠিকভাবে বলতে গেলে, সমস্থানিকগুলি একই সংখ্যক প্রোটন সহ দুটি বা আরও বেশি নিউক্লাইড হয়;একই সংখ্যক নিউট্রনযুক্ত নিউক্লাইডকেআইসোটোন বলা হয়।আণবিক ভর সংখ্যা, প্রতীকA, হলZ এবংN এর যোগফলের সমান, অর্থাৎ A = (Z + N)। একই আণবিক ভর সংখ্যা সহ নিউক্লাইডকেআইসোবার বলা হয়।হাইড্রোজেন পরমাণুর সবচেয়ে সাধারণসমস্থানিকের নিউক্লিয়াসে (রাসায়নিক প্রতীক১H) একটিমাত্র প্রোটন আছে। ভারী হাইড্রোজেন সমস্থানিকের নিউক্লিয়াসডিউটেরিয়াম (D বা২H) এবংট্রিটিয়াম (T বা3H) এর মধ্যে একটি প্রোটন থাকে এবং যথাক্রমে একটি ও দুটি নিউট্রন থাকে। অন্যান্য সমস্ত ধরনের পারমাণবিক নিউক্লিয়াসে দুটি বা আরও বেশি প্রোটন এবং বিভিন্ন সংখ্যক নিউট্রন থাকে।উদাহরণস্বরূপ, সাধারণ রাসায়নিক উপাদানের সর্বাধিক সাধারণ নিউক্লাইডসীসাতে, (২০৮Pb) ৮২টি প্রোটন এবং ১২৬টি নিউট্রন রয়েছে।নিউক্লাইডের সারণির মধ্যে সমস্ত পরিচিত নিউক্লাইড রয়েছে। নিউট্রন কোনও রাসায়নিক উপাদান না হলেও এই সারণিতে অন্তর্ভুক্ত রয়েছে।[৮]
মুক্ত নিউট্রনের ভর ৯৩৯,৫৬৫,৪১৩.৩eV/c২, বা ১.৬৭৪৯২৭৪১×১০−২৭কেজি, বা ১.০০৮৬৬৪৯১৫৮৮u।[৯] নিউট্রনের গড়ব্যাসার্ধ প্রায় ০.৮×১০−১৫মিটার, বা ০.৮fm,[১০] এবং এরস্পিন-½ফার্মিয়ন।[১১]নিউট্রনের কোনও পরিমাপযোগ্য বৈদ্যুতিক আধান নেই। ধনাত্মক বৈদ্যুতিক আধানের জন্য, প্রোটন সরাসরিবৈদ্যুতিক ক্ষেত্র দ্বারা প্রভাবিত হয়, কিন্তু নিউট্রনের ওপর বৈদ্যুতিক ক্ষেত্রের প্রভাব পড়েনা। নিউট্রনেরচৌম্বকীয় মোমেন্ট রয়েছে, তবে নিউট্রনচৌম্বক ক্ষেত্র দ্বারা প্রভাবিত হয়। নিউট্রনের চৌম্বকীয় মোমেন্টের মান ঋণাত্মক, কারণ এর অভিমুখীকরণ এর স্পিনের বিপরীতে।[১২]
মুক্ত নিউট্রন স্থায়ী হয়না,ক্ষয় হয়ে প্রোটন,ইলেকট্রন এবংপ্রতিনিউট্রিনোতে পরিণত হয়, যারগড় জীবন ১৫ মিনিটেরও কম (৮৮১.৫±১.৫ সেকেন্ড)।[১৩] এটিতেজস্ক্রিয়তা বাবিটা ক্ষয় নামে পরিচিত। এই ক্ষয় সম্ভব কারণ নিউট্রনের ভর প্রোটনের চেয়ে কিছুটা বেশি। মুক্ত প্রোটন স্থিতিশীল। নিউক্লিয়াসে আবদ্ধনিউক্লাইডের উপর নির্ভর করে নিউট্রন বা প্রোটন স্থিতিশীল বা অস্থায়ী হতে পারে। যেখানে নিউট্রন ক্ষয় হয়ে প্রোটনে পরিণত হয় বা তার বিপরীত ঘটে, সেই বিটা ক্ষয়দুর্বল শক্তি দ্বারা পরিচালিত হয়, এবং এর জন্য ইলেক্ট্রন এবং নিউট্রিনো বা তাদের অ্যান্টি-পার্টিকেলগুলির নিঃসরণ বা শোষণ প্রয়োজন।
নিউট্রন এবং এর বৈশিষ্ট্যগুলোর আবিষ্কারের ইতিহাস ২০ শতকের প্রথমার্ধে পারমাণবিক পদার্থবিজ্ঞানের অসাধারণ বিকাশের কেন্দ্রবিন্দু, যা চূড়ান্তভাবে ১৯৪৫ সালে পরমাণু বোমার দিকে অগ্রসর করে। ১৯১১ সালে রাদারফোর্ড মডেলে, পরমাণু ছিল ঋণাত্মক চার্জযুক্ত, ইলেক্ট্রনগুলোর একটি বৃহত্তর মেঘ দ্বারা বেষ্টিত একটি ছোট ধনাত্মক চার্জযুক্ত বিশাল নিউক্লিয়াস। ১৯২০ সালে, রাদারফোর্ড প্রকাশ করলেন যে, নিউক্লিয়াসে ধনাত্মক প্রোটন এবং নিরপেক্ষভাবে চার্জযুক্ত কণা রয়েছে, কোনওভাবে প্রোটন এবং একটি ইলেক্ট্রন হিসাবে আবদ্ধ হওয়ার প্রস্তাবনা দিয়েছিলেন।[১৪] ইলেক্ট্রনগুলো নিউক্লিয়াসের মধ্যেই অবস্থান করছে বলে ধারণা করা হয়েছিল কারণ বিটা বিকিরণ নিউক্লিয়াস থেকে নির্গত ইলেকট্রন নিয়ে গঠিত ছিল।[১৪] রাদারফোর্ড এই অনাহিত কণাকে নিউট্রন বলেছিলেন, ল্যাটিন মূলনিউট্রালটিস (নিউটার) এবং গ্রীক প্রত্যয় -অন (অতি ক্ষুদ্র পারমাণবিক কণার নামে ব্যবহৃত একটি প্রত্যয়, যেমনইলেক্ট্রন এবংপ্রোটন) দ্বারা বোঝায়।[১৫][১৬] তবে পরমাণুর সাথে সম্পর্কিত নিউট্রন শব্দের উল্লেখ ১৮৯৯ সালের প্রথম দিকে সাহিত্যে পাওয়া যায়।[১৭]
আমেরিকান রসায়নবিদ ডব্লিউ.ডি. হার্কিনস ১৯২০ সালে নিউট্রনের অস্তিত্বের সঠিকভাবে পুর্বাভাস দিয়েছিলেন (প্রোটন-ইলেক্ট্রন মিশ্রিত হিসাবে) এবং তিনিই প্রথম পারমাণবিক নিউক্লিয়াসের সাথে "নিউট্রন" শব্দটি ব্যবহার করেছিলেন।[১৮][১৯] ১৯২০ এর দশক জুড়ে, পদার্থবিজ্ঞানীরা ধরে নিয়েছিলেন যে পারমাণবিক নিউক্লিয়াস প্রোটন এবং "পারমাণবিক ইলেক্ট্রন" দ্বারা গঠিত[২০][২১] তবে সুস্পষ্ট সমস্যা ছিল। কোয়ান্টাম মেকানিক্সের হাইজেনবার্গের অনিশ্চয়তার সম্পর্কের সাথে নিউক্লিয়াসের প্রোটন – ইলেক্ট্রন মডেলের পুনর্মিলন করা কঠিন ছিল।[২২][২৩] ১৯২৮ সালে ওসকার ক্লেইন আবিষ্কার করেছিলেন ক্লেইন প্যারাডক্স,[২৪] নিউক্লিয়াসের মধ্যে আবদ্ধ ইলেক্ট্রনের ধারণার প্রতি আরও কোয়ান্টাম মেকানিক্স আপত্তি উপস্থাপন করেছিলেন।[২২] পরমাণু এবং অণুগুলোর পর্যবেক্ষিত বৈশিষ্ট্যগুলো প্রোটন-ইলেক্ট্রন অনুমান থেকে প্রত্যাশিত পারমাণবিক ঘূর্ণনের সাথে সঙ্গতিপূর্ণ ছিল না। প্রোটন এবং ইলেকট্রন উভয়ই ½ ħ এর অভ্যন্তরীণ ঘূর্ণন বহন করে। একই প্রজাতির আইসোটোপগুলোতে (অর্থাৎ একই সংখ্যক প্রোটন রয়েছে) উভয়ই পূর্ণসংখ্যা বা ভগ্নাংশ ঘূর্ণন থাকতে পারে, অর্থাৎ নিউট্রন ঘূর্ণন অবশ্যই ভগ্নাংশ (½ ħ) হতে হবে। তবে নিউট্রনের ভগ্নাংশ ঘূর্ণন পাওয়ার জন্য একটি ইলেক্ট্রন এবং প্রোটনের ঘূর্ণনের (নিউট্রন গঠনের জন্য বন্ধন থাকা উচিত) সুবিন্যস্ত করার কোনও উপায় নেই।
১৯৩১ সালে, ওয়ালথার বোথ এবং হারবার্ট বেকার পেয়েছিলেন যে পোলোনিয়াম থেকে আলফা কণা বিকিরণ যদি বেরিলিয়াম, বোরন বা লিথিয়ামের উপরে পড়ে, তবে একটি অস্বাভাবিকভাবে তীক্ষ্ণ বিকিরণ উদ্ভূত হয়। বিকিরণটি বৈদ্যুতিক ক্ষেত্র দ্বারা প্রভাবিত হয়নি, সুতরাং বোথ এবং বেকার ধরে নিয়েছিলেন এটি গামা বিকিরণ।[২৫][২৬] পরের বছর প্যারিসেইরেন জোলিও-ক্যুরি এবংফ্রেদেরিক জোলিও-কুরি দেখিয়েছিলেন যে এই "গামা" বিকিরণটি যদি প্যারাফিন বা অন্য কোনও হাইড্রোজেনযুক্ত যৌগের উপর পড়ে, তবে এটি খুব উচ্চ শক্তির প্রোটন বের করে দেয়।[২৭]ক্যামব্রিজের ক্যাভেনডিশ ল্যাবরেটরিতে রাদারফোর্ড বাজেমস চ্যাডউইক উভয়ইগামা রশ্মির ব্যাখ্যা দ্বারা নিশ্চিত হননি।[২৮] চ্যাডউইক দ্রুত একাধিক পরীক্ষা-নিরীক্ষা করেছিলেন যা দেখিয়েছিল যে নতুন বিকিরণটিপ্রোটনের মতো সমান ভর নিয়ে অনাহিত কণা নিয়ে গঠিত।[৪][২৯][৩০] এই কণাগুলি নিউট্রন ছিল। চ্যাডউইক এই আবিষ্কারের জন্য ১৯৩৫ সালে পদার্থবিজ্ঞানে নোবেল পুরস্কার পান।[২]
মডেলগুলো হাইড্রোজেন, হিলিয়াম, লিথিয়াম এবং নিয়ন পরমাণুতে নিউক্লিয়াস এবং ইলেকট্রন শক্তির স্তর চিত্রিত করে। বাস্তবে, নিউক্লিয়াসের ব্যাসটি পরমাণুর ব্যাসের চেয়ে প্রায় ১০০,০০ গুণ ছোট।
প্রোটন এবং নিউট্রন সমন্বিত একটি পারমাণবিক নিউক্লিয়াসের মডেলওয়ার্নার হাইজেনবার্গ[৩১][৩২][৩৩] এবং অন্যরা দ্রুত বিকাশ করেছিলেন।[৩৪][৩৫] প্রোটন-নিউট্রন মডেল পারমাণবিক ঘূর্ণন ধাঁধাটি ব্যাখ্যা করেছিল। বিটা বিকিরণের উৎসএনরিকো ফের্মি ১৯৩৪ সালে বিটা ক্ষয় প্রক্রিয়া দ্বারা ব্যাখ্যা করেছিলেন, যেখানে নিউট্রন একটি প্রোটনকে ক্ষয় করে একটি ইলেক্ট্রন এবং একটি (এখনও আবিষ্কার হয়নি) নিউট্রিনো তৈরি করে।[৩৬] ১৯৩৫ সালে চ্যাডউইক এবং তার মরিস গোল্ডহ্যাবার নিউট্রনের ভরের প্রথম সঠিক পরিমাপের কথা জানিয়েছেন।[৩৭][৩৮]
১৯৩৪ সাল নাগাদ উচ্চ পারমাণবিক সংখ্যার উপাদানে তেজস্ক্রিয়তা সংঘটিত করতে ফের্মি ভারী উপাদানকে নিউট্রন দিয়ে বোমা নিক্ষেপ করেন। "নিউট্রন ইরেডিয়েশন দ্বারা সৃষ্ট নতুন তেজস্ক্রিয় উপাদানের অস্তিত্ব সম্পর্কে তার প্রদর্শনের জন্য, এবং ধীরে ধীরে নিউট্রন দ্বারা আনীত পারমাণবিক বিক্রিয়া সম্পর্কিত তার আবিষ্কারের জন্য" ফের্মি ১৯৩৮ সালে নোবেল পুরস্কার পান।[৩৯] 1938 সালেঅটো হ্যান,লিস মেইটনার এবং ]ফ্রিটজ স্ট্রেসম্যান নিউট্রন বোমাবর্ষণ দ্বারা প্ররোচিত পারমাণবিক বিভাজন বা হালকা উপাদানেইউরেনিয়াম নিউক্লিয়ার ভগ্নাংশ আবিষ্কার করেছিলেন।[৪০][৪১][৪২]ভারী পরমাণু নিউক্লিয়ার বিভাজন আবিষ্কারের জন্য হ্যান ১৯৪৫ সালে রসায়নে ১৯৪৪ সালের নোবেল পুরস্কার পেয়েছিলেন।[৪৩][৪৪][৪৫] পারমাণবিক বিভাজনের আবিষ্কার দ্বিতীয় বিশ্বযুদ্ধের শেষে পারমাণবিক শক্তি এবং পারমাণবিক বোমার বিকাশের দিকে পরিচালিত করে।
যেহেতু মিথস্ক্রিয়া প্রোটনগুলোর একটি পারস্পরিক বৈদ্যুতিক চৌম্বকীয় বিকর্ষণ রয়েছে যা তাদের আকর্ষণীয় পারমাণবিক মিথস্ক্রিয়া থেকে শক্তিশালী, নিউট্রন হল যেকোন পারমাণবিক নিউক্লিয়াসের একটি প্রয়োজনীয় উপাদান যা একাধিক প্রোটন ধারণ করে (ডিপ্রোটন এবংনিউট্রন–প্রোটন অনুপাত দেখুন)।[৪৬] নিউট্রন পারমাণবিক শক্তির মাধ্যমে নিউক্লিয়াসে প্রোটন এবং একে অপরকে আবদ্ধ করে, প্রোটনের মধ্যে বিকর্ষণকারী শক্তিকে কার্যকরভাবে সহনীয় করে এবং নিউক্লিয়াসকে স্থিতিশীল করে।
নিউক্লিয়াসে আবদ্ধ নিউট্রন এবং প্রোটনগুলো একটি কোয়ান্টাম মেকানিকাল সিস্টেম গঠন করে যেখানে প্রতিটি নিউক্লিয়ন একটি নির্দিষ্ট, শ্রেণিবদ্ধ কোয়ান্টাম অবস্থায় আবদ্ধ থাকে। প্রোটন নিউক্লিয়াসের মধ্যে নিউট্রনে বা বিপরীতে ক্ষয় করতে পারে। বিটা ক্ষয় নামে পরিচিত এই প্রক্রিয়াটির জন্য একটি ইলেকট্রন বা পজিট্রন এবং একটি যুক্ত নিউট্রিনো নির্গমন প্রয়োজন। -এই নির্গত কণাগুলো শক্তিকে অতিরিক্ত পরিমাণে বহন করে কারণ নিউক্লিয়ন এক কোয়ান্টাম অবস্থা থেকে নিম্ন শক্তির অবস্থায় পতিত হয়, যখন প্রোটন (বা নিউট্রন) নিউট্রনে (বা প্রোটন) পরিবর্তিত হয়। মৌলিক শক্তি সংরক্ষণ এবং কোয়ান্টাম মেকানিকাল সীমাবদ্ধতার দ্বারা আরোপিত হলেই এই ধরনের ক্ষয় প্রক্রিয়াগুলো ঘটতে পারে। নিউক্লিয়ার স্থায়িত্ব এই সীমাবদ্ধতার উপর নির্ভর করে।
নিউক্লিয়াসের বাইরে, মুক্ত নিউট্রন পরিবর্তনশীল এবং গড় জীবনকাল৮৭৯.৬±০.৮s (প্রায় ১৪ মিনিট, ৪০ সেকেন্ড); সুতরাং এই প্রক্রিয়াটির অর্ধ-জীবন (যাln(2) = 0.693) এর একটি ফ্যাক্টর দ্বারা গড় জীবনকাল থেকে পৃথক) {{val|[১৩][৪৭] নিউট্রনের চেয়ে প্রোটনের ভর কম হওয়ায় এই ক্ষয়টি কেবল সম্ভব। ভর-শক্তির সমতুল্যতা অনুসারে, যখন নিউট্রন এইভাবে প্রোটনের সাথে ক্ষয় হয় তখন এটি একটি নিম্ন শক্তির অবস্থা অর্জন করে। নিউট্রনের বিটা ক্ষয়, উপরে বর্ণিত, তেজস্ক্রিয় ক্ষয় দ্বারা চিহ্নিত করা যেতে পারে:[৪৮]
n0 → p+ + e− + ν e
কোথায় p+ , e− এবং ν e যথাক্রমে প্রোটন, ইলেক্ট্রন এবং ইলেকট্রন অ্যান্টিনিউট্রিনোকে বোঝানো হয়। মুক্ত নিউট্রনের জন্য এই প্রক্রিয়াটির ক্ষয় শক্তি (নিউট্রন, প্রোটন এবং ইলেকট্রনের ভরের উপর ভিত্তি করে) 0.782343 MeV হয়। বিটা ক্ষয় ইলেক্ট্রনের সর্বাধিক শক্তি (যে প্রক্রিয়াতে নিউট্রিনো একটি স্বল্প পরিমাণে গতিশক্তি গ্রহণ করে) 0.782 ± 0.013 MeV-তে পরিমাপ করা হয়েছে।[৪৯] পরের সংখ্যাটি তুলনামূলকভাবে নিউট্রিনোর ক্ষুদ্র নিশ্চল ভর নির্ধারণ করতে যথাযথভাবে পরিমাপ করা যায় না (যা তাত্ত্বিকভাবে সর্বাধিক ইলেকট্রন গতিবেগ শক্তি থেকে বিয়োগ করা হয়) পাশাপাশি নিউট্রিনো ভর অনেক অন্যান্য পদ্ধতি দ্বারা সীমাবদ্ধ।
একই গুণফলের সাথে একটি ছোট্ট ভগ্নাংশ (এক হাজারে প্রায় এক) মুক্ত নিউট্রন ক্ষয় হয় তবে নির্গত গামা রশ্মির গঠনে একটি অতিরিক্ত কণা যুক্ত করা হয়:
n0 → p+ + e− + ν e + γ
প্রোটনের সাথে নির্গত বিটা কণার তড়িৎ চৌম্বকীয় মিথস্ক্রিয়া থেকে উদ্ভূত এই গামা রশ্মিকে "অভ্যন্তরীণ ব্রেমসস্ট্রাহলং" বলে মনে করা হয়। অভ্যন্তরীণ ব্রেমসস্ট্রাহলং গামা রশ্মির উৎপাদন আবদ্ধ নিউট্রনগুলোর বিটা ক্ষয়ের একটি ছোট বৈশিষ্ট্য (নিচে আলোচনা করা হয়েছে)।
একটি পরমাণুর নিউক্লিয়াসের একটি পরিকল্পিত β- বিকিরণ, নিউক্লিয়াস থেকে দ্রুত ইলেকট্রনের নিঃসরণ (সাথে থাকা অ্যান্টিনিউট্রিনো বাদ দেওয়া হয়)। নিউক্লিয়াসের জন্য রাদারফোর্ড মডেলে, লাল গোলকগুলো ধনাত্মক চার্জের প্রোটন ছিল এবং নীল গোলকগুলো কোনও প্রকারের নেট চার্জ ছাড়াই একটি ইলেকট্রনের সাথে শক্তভাবে আবদ্ধ ছিল। ইনসেটটি একটি মুক্ত নিউট্রনের বিটা ক্ষয় দেখাচ্ছে যেমন এটি আজ বোঝা যাচ্ছে; এই প্রক্রিয়াতে একটি ইলেকট্রন এবং অ্যান্টিনিউট্রিনো তৈরি করা হয়।
নিউট্রন ক্ষয়ের খুব ছোট লঘুতাকে(প্রায় চার মিলিয়ন) বলা হয় "দ্বি-আকার (নিউট্রন) ক্ষয়", যাতে প্রোটন, ইলেক্ট্রন এবং অ্যান্টিনিউট্রিনো যথারীতি উৎপাদিত হয়, কিন্তু ইলেক্ট্রন প্রোটন থেকে মুক্ত হতে 13.6 eV প্রয়োজনীয় শক্তি অর্জন করতে ব্যর্থ হয় (হাইড্রোজেনের আয়নীকরণ শক্তি) এবং তাই কেবল এটির সাথে আবদ্ধ থাকে, নিরপেক্ষ হাইড্রোজেন পরমাণু হিসাবে ("দুটি আকারের একটি")। এই ধরনের মুক্ত নিউট্রন ক্ষয়, নিউট্রন ক্ষয় শক্তি প্রায় সমস্ত অ্যান্টিনিউট্রিনো দ্বারা চালিত হয় (অন্যান্য "আকার")। (হাইড্রোজেন পরমাণু কেবলমাত্র (ক্ষয় শক্তি)/(হাইড্রোজেন নিশ্চল শক্তি) আলোর গতিতে বা ২৫০ কিমি/সেকেন্ড গতিতে ফিরে আসে)।
একটি মুক্ত প্রোটনের নিউট্রনে (প্লাস পজিট্রন এবং নিউট্রিনো) রূপান্তরকরণ বাস্তবিকভাবে অসম্ভব, যেহেতু একটি মুক্ত নিউট্রনের একটি মুক্ত প্রোটনের চেয়ে বৃহত্তর ভর থাকে। তবে একটি প্রোটন এবং একটি ইলেকট্রন বা নিউট্রিনোর একটি উচ্চ-শক্তির সংঘর্ষের ফলে নিউট্রন হতে পারে।
একটি নিরপেক্ষ নিউট্রনের প্রায় ১০.২ মিনিটের অর্ধেক জীবন থাকে, তবে নিউক্লিয়ায় বেশিরভাগ নিউট্রন স্থির থাকে। পারমাণবিক শেল মডেল অনুসারে, নিউক্লাইডের প্রোটন এবং নিউট্রনগুলো একটি কোয়ান্টাম মেকানিকাল সিস্টেম যা স্বতন্ত্র কোয়ান্টাম সংখ্যার সাথে পৃথক শক্তির স্তরে সংগঠিত হয়। নিউট্রন ক্ষয় হওয়ার জন্য, ফলস্বরূপ প্রোটনের প্রাথমিক নিউট্রন অবস্থার চেয়ে কম শক্তিতে একটি উপলব্ধ অবস্থার প্রয়োজন। স্থিতিশীল নিউক্লিয়ায় সম্ভাব্য নিম্নশক্তি অবস্থায় সব পূর্ণ হয়, যার অর্থ তারা প্রতিটি স্পিন আপ এবং স্পিন ডাউন সহ দুটি প্রোটন দ্বারা দখল করে আছে। পাওলি বর্জন নীতিটি তাই স্থিতিশীল নিউক্লিয়ায় একটি প্রোটনে নিউট্রনের ক্ষয়কে অনুমতি দেয় না। এই পরিস্থিতি একটি পরমাণুর ইলেকট্রনের অনুরূপ, যেখানে ইলেকট্রনগুলোর পৃথক পারমাণবিক কক্ষপথ থাকে এবং বর্জন নীতি অনুসারে একটি ফোটনের নির্গমনসহ, নিম্ন শক্তি অবস্থায় ক্ষয় হওয়া থেকে রোধ করা হয়।
অস্থায়ী নিউক্লিয়ায় নিউট্রন উপরে বর্ণিত হিসাবেবিটা ক্ষয় দ্বারা ক্ষয় হতে পারে। এই ক্ষেত্রে ক্ষয়জনিত প্রোটনের জন্য একটি শক্তিশালী মঞ্জুরিপ্রাপ্ত কোয়ান্টাম অবস্থা উপলব্ধ। এই ক্ষয়ের একটি উদাহরণ কার্বন -14 (6 প্রোটন, 8 নিউট্রন) যা প্রায় ৫,৭৩০ বছরের অর্ধ-জীবন নিয়েনাইট্রোজেন -14 (7 প্রোটন, 7 নিউট্রন) ক্ষয় হয়।
নিউক্লিয়াসের অভ্যন্তরে, একটি প্রোটন বিপরীত বিটা ক্ষয়ের মাধ্যমে নিউট্রনে রূপান্তর করতে পারে, যদি নিউট্রনের জন্য শক্তিশালীভাবে আরোপিত কোয়ান্টাম অবস্থা উপলব্ধ থাকে। এই রূপান্তরটি একটি পজিট্রন এবং একটি ইলেক্ট্রন নিউট্রিনো নির্গমন দ্বারা ঘটে:
নিউক্লিয়ায় নিউট্রনগুলোর দ্বারা পজিট্রন গ্রহণ যা যথা সম্ভব নিউট্রনগুলোর একটি অতিরিক্ত পরিমাণ ধারণ করে, তবে বাধাগ্রস্ত হয় কারণ পজিট্রনগুলো ধনাত্মক নিউক্লিয়াস দ্বারা প্রতিহত করা হয় এবং যখন তারা ইলেকট্রনের মুখোমুখি হয় তখন দ্রুত ধ্বংস হয়।
প্রতিযোগিতায় তিন ধরনের বিটা ক্ষয়কে একক আইসোটোপ কপার - 64 (29 প্রোটন, 35 নিউট্রন) দ্বারা চিত্রিত করা হয়েছে, যার প্রায় ১২.৭ ঘণ্টা অর্ধ-জীবন রয়েছে। এই আইসোটোপটিতে একটি বিজোড় প্রোটন এবং একটি বিজোড় নিউট্রন রয়েছে, তাই প্রোটন বা নিউট্রন ক্ষয় হতে পারে। এই নির্দিষ্ট নিউক্লাইডটি প্রায় সমানভাবে প্রোটন ক্ষয় হতে পারে (পজিট্রন নিঃসরণ দ্বারা, ১৮% বা ইলেক্ট্রন গ্রহণ দ্বারা, ৪৩%) বা নিউট্রন ক্ষয় (ইলেক্ট্রন নিঃসরণ দ্বারা, ৩৯%)।
একটি মধ্যবর্তী ভারীডব্লিউ বোসনের মাধ্যমে একটি প্রোটন, ইলেক্ট্রন এবং ইলেক্ট্রন অ্যান্টিনিউট্রিনোতে নিউট্রনের বিটা ক্ষয়ের জন্য ফেনম্যান চিত্র
কণা পদার্থবিজ্ঞানের জন্য আদর্শ মডেলের তাত্ত্বিক কাঠামোর মধ্যে নিউট্রন দুটি ডাউন কোয়ার্ক এবং একটি আপ কোয়ার্ক দ্বারা গঠিত। নিউট্রনের একমাত্র সম্ভাব্য ক্ষয় মোড যা বেরিয়ন সংখ্যা সংরক্ষণ করে নিউট্রনের কোয়ার্কগুলোর একটিতে দুর্বল মিথস্ক্রিয়ার মাধ্যমে গন্ধ পরিবর্তন করতে পারে। নিউট্রনের ডাউন কোয়ার্কগুলোর একটি ক্ষয়কে লাইটার আপ কোয়ার্কে ডব্লিউ বোসন নির্গমন দ্বারা অর্জন করা যেতে পারে। এই প্রক্রিয়ার দ্বারা, বিটা ক্ষয়ের আদর্শ মডেল বিবরণ, নিউট্রন ক্ষয়ে একটি প্রোটনে পরিণত হয় (যার মধ্যে একটি ডাউন এবং দুটি আপ কোয়ার্ক থাকে), একটি ইলেক্ট্রন এবং একটি ইলেকট্রন অ্যান্টিনিউট্রিনোতে ক্ষয় হয়।
শীর্ষস্থানীয়-অর্ডার ফেয়নম্যান ডায়াগ্রাম β + একটি মধ্যবর্তী W+ বোসনের মাধ্যমে নিউট্রন, পজিট্রন এবং ইলেক্ট্রন নিউট্রিনোর মধ্যে প্রোটনের ক্ষয় W+ বোসন
নিউট্রনে প্রোটনের ক্ষয় ইলেক্ট্রোউইক বলের মাধ্যমে একইভাবে ঘটে। W বোসনের নিঃসরণ দ্বারা প্রোটনের আপ কোয়ার্কগুলোর একটি ডাউন ডাউন কোয়ার্কে ক্ষয় হতে পারে। প্রোটন একটি নিউট্রন, একটি পজিট্রন এবং একটি ইলেক্ট্রন নিউট্রিনোতে পরিণত হয়। এই প্রতিক্রিয়াটি কেবলমাত্র পারমাণবিক নিউক্লিয়াসের মধ্যেই ঘটতে পারে যা সৃষ্ট নিউট্রনের জন্য নিম্ন শক্তিতে কোয়ান্টাম অবস্থায় থাকে।
কোনো নিউট্রনের ভরসরাসরি স্পেকট্রোম্যাট্রি দ্বারা নির্ধারণ করা যায় না কারণ এতে বৈদ্যুতিক চার্জ নেই। তবে যেহেতু একটি প্রোটন এবং ডিউটেরনের ভর একটি ভর স্পেকট্রোমিটার দিয়ে পরিমাপ করা যায়, তাই নিউট্রনের ভরটি ডিউটেরনের ভর থেকে প্রোটন ভরকে বিয়োগ করে অনুমান করা যায়, পার্থক্যটির সাথে নিউট্রনের ভর এবং ডিউটিরিয়ামেরবাঁধাই শক্তি ভর রয়েছে (একটি ধনাত্মক নির্গমন শক্তি হিসাবে প্রকাশিত)। পরেরটি সরাসরি একটি 0.7822 MeV গামা ফোটনের শক্তি ()-এর পরিমাপের মাধ্যমে পরিমাপ করা যেতে পারে যখন একটি ডিউটেরন নিউট্রন গ্রহণকারী প্রোটন দ্বারা গঠিত হয় (এটি বহির্মুখী এবং শূন্য-শক্তি নিউট্রনগুলোর সাথে ঘটে) )। ডিউটেরনের ছোট পশ্চাৎপদ গতিশক্তি () (মোট শক্তির প্রায় ০.০৬%) এর জন্যও অবশ্যই গণনা করতে হবে।
গামা রশ্মির শক্তি এক্স-রে বিচ্ছুরণ কৌশলগুলোর দ্বারা উচ্চ নির্ভুলতার সাথে পরিমাপ করা যেতে পারে, যেমন ১৯৪৮ সালে বেল এবং এলিয়ট করেছিলেন। এই কৌশল দ্বারা নিউট্রন ভরগুলোর জন্য সেরা আধুনিক (1986) মানগুলো গ্রীন, এট অ্যাল দ্বারা সরবরাহ করা হয়।[৫০] এগুলি একটি নিউট্রন ভর দেয়:
নিউট্রনের মোট বৈদ্যুতিক চার্জ০e। এই শূন্য মানটি পরীক্ষামূলকভাবে প্রমাণিত হয়েছে এবং নিউট্রনের চার্জের জন্য বর্তমানে পরীক্ষামূলক সীমা−২(৮)×১০−২২e,[৫২] বা−৩(১৩)×১০−৪১C এই মানটি শূন্যের সাথে সামঞ্জস্যপূর্ণ, প্রদত্ত পরীক্ষামূলক অনিশ্চয়তা দেয় (প্রথম বন্ধনীতে নির্দেশিত)। তুলনা করে, প্রোটনের চার্জ+১e হয়।
নিউট্রন একটি নিরপেক্ষ কণা হলেও নিউট্রনের চৌম্বকীয় ভ্রামক শূন্য নয়। নিউট্রন বৈদ্যুতিক ক্ষেত্র দ্বারা প্রভাবিত হয় না, তবে এটি চৌম্বকীয় ক্ষেত্র দ্বারা প্রভাবিত হয়। নিউট্রনের চৌম্বকীয় ভ্রামক এর কোয়ার্ক গঠন এবং অভ্যন্তরীণ চার্জ বিতরণের একটি নির্দেশ দেয়।[৫৩]নিউট্রনের চৌম্বকীয় ভ্রামকের মানটি প্রথম ১৯৪০ সালে ক্যালিফোর্নিয়ার বার্কলেতেলুই আলভারেজ এবংফেলিক্স ব্লচ দ্বারা সরাসরি পরিমাপ করা হয়েছিল।[৫৪] আলভারেজ এবং ব্লচ নিউট্রনের চৌম্বকীয় ভ্রামকেরμn=−১.৯৩(২)μN হিসাবে নির্ধারণ করেছিলেন, যেখানেμNহল পারমাণবিক চৌম্বক।
হ্যাডরনের কোয়ার্ক মডেলে নিউট্রনটি এক আপ কোয়ার্ক (চার্জ +2/3e) এবং দুটি ডাউন কোয়ার্ক (চার্জ −1/3e) নিয়ে গঠিত হয়।[৫৩] নিউট্রনের চৌম্বকীয় ভ্রামক উপাদান কোয়ার্কের চৌম্বকীয় ভ্রামকের যোগফল হিসাবে স্থাপিত করা হয়।[৫৫] গণনা অনুমান করে যে কোয়ার্কগুলো বিন্দুর মতো ডিরাক কণার মতো আচরণ করে, যার প্রত্যেকটির নিজস্ব চৌম্বকীয় ভ্রামক রয়েছে। সরলভাবে বলা যায়, নিউট্রনের চৌম্বকীয় ভ্রামক তিনটি কোয়ার্ক চৌম্বকীয় ভ্রামকের ভেক্টর যোগফলের সাথে নিউট্রনের মধ্যে তিনটি চার্জের কোয়ার্কের গতির ফলে কক্ষপথ চৌম্বকীয় ভ্রামকের ফলে দেখা যায়।
১৯৬৪ সালে আদর্শ মডেলের প্রাথমিক সাফল্যের একটিতে মির্জা এ.বি. বেগ,বেঞ্জামিন ডব্লিউ.লি এবং আব্রাহাম পাইস তাত্ত্বিকভাবে নিউট্রন চৌম্বকীয় ভ্রামকে প্রোটনের অনুপাতকে −3/2 হিসাবে গণনা করেছেন, যা পরীক্ষামূলক মানটির সাথে 3% এর মধ্যে মিল হয়।[৫৬][৫৭][৫৮] এই অনুপাতের জন্য পরিমাপ করা মান−১.৪৫৯৮৯৮০৫(৩৪)।[৯] পাওলি বর্জন নীতির সাথে এই গণনার কোয়ান্টাম মেকানিকাল মূলসূত্রের সাথে অসঙ্গতি রয়েছে, ১৯৬৪ সালেঅস্কার ডব্লিউ. গ্রিনবার্গের কোয়ার্কের জন্য রঙের চার্জ আবিষ্কার করেছিল।[৫৬]
উপরের আচরণ প্রোটনের সাথে নিউট্রনের তুলনা করে, কোয়ার্কগুলোর জটিল আচরণকে মডেলগুলোর মধ্যে হতে বিয়োগ করতে দেয় এবং কেবল কোয়ার্ক চার্জের (বা কোয়ার্কের ধরনের) প্রভাবগুলো কী হবে তা বিশ্লেষণ করে।নিউট্রনগুলোর অভ্যন্তর প্রোটনের মতো অনেকগুলো দেখতে এই জাতীয় গণনা যথেষ্ট, প্রোটনে একটি আপ কোয়ার্ক প্রতিস্থাপন করে নিউট্রনের ডাউন কোয়ার্কের সাথে কোয়ার্ক গঠনের পার্থক্যের জন্য সংরক্ষণ করা হয়।
নিউট্রন চৌম্বকীয় ভ্রামক প্রায় তিন কোয়ার্ক সমন্বয়ে গঠিত বেয়ারনের জন্য একটি সাধারণ অ-আপেক্ষিক, কোয়ান্টাম মেকানিকাল তরঙ্গক্রিয়া দ্বারা মোটামুটি গণনা করা যায়। একটি সরল গণনা নিউট্রন, প্রোটন এবং অন্যান্য বেরিয়নের চৌম্বকীয় ভ্রামকের জন্য মোটামুটি সঠিক গণনা দেয়।[৫৫] নিউট্রনের জন্য, এই গণনার শেষ ফলাফলটি নিউট্রনের চৌম্বকীয় ভ্রামকμn= 4/3μd − 1/3μu, μn = 4/3 --d - 1/3 দ্বারা দেওয়া হয়, যেখানেμd এবংμu যথাক্রমে ডাউন এবং আপ কোয়ার্কের চৌম্বকীয় ভ্রামক। এই ফলাফলটি কোয়ার্কের অভ্যন্তরীণ চৌম্বকীয় ভ্রামককে তাদের কক্ষপথ চৌম্বকীয় ভ্রামকের সাথে একত্রিত করে এবং অনুমান করা হয় যে, তিনটি কোয়ার্ক একটি বিশেষ, প্রধান কোয়ান্টাম অবস্থায় রয়েছে।
বেরিয়ন
কোয়ার্ক মডেলের চৌম্বকীয় ভ্রামক
গণনা লব্ধ ()
নিরীক্ষিত ()
p
4/3μu − 1/3μd
2.79
2.793
n
4/3μd − 1/3μu
−1.86
−1.913
এই গণনার ফলাফল উৎসাহজনক, কিন্তু আপ বা ডাউন কোয়ার্কের ভর নিউক্লিয়নের ভরের 1/3 বলে ধরা হয়।[৫৫] কোয়ার্কের ভর আসলে নিউক্লিয়নের প্রায় ১%।[৫৯] পার্থক্যটি নিউক্লিয়নের জন্য আদর্শ মডেলের জটিলতা থেকে উদ্ভূত, যেখানে তাদের বেশিরভাগ ভর উৎপন্ন হয়গ্লুঅন ক্ষেত্রে, ভার্চুয়াল কণা এবং তাদের যুক্ত শক্তি যা শক্তিশালী বলের প্রয়োজনীয় দিক।[৫৯][৬০] তদ্ব্যতীত, কোয়ার্ক এবং গ্লুঅনগুলোর জটিল ব্যবস্থা যা নিউট্রন গঠনে একটি আপেক্ষিক ব্যবস্থা প্রয়োজন।[৬১] তবে নিউক্লিয়ন চৌম্বকীয় ভ্রামক প্রথম নীতিগুলো থেকে সফলভাবে সংখ্যাগতভাবে গণনা করা হয়েছে, উল্লিখিত সমস্ত প্রভাব সহ কোয়ার্ক ভরের জন্য আরও আপেক্ষিক মান ব্যবহার করে। গণনাটি ফলাফল দিয়েছে যা পরিমাপের সাথে স্পষ্ট মিল ছিল তবে এর জন্য উল্লেখযোগ্য গণনা সংস্থান প্রয়োজন।[৬২][৬৩]
নিউট্রন হল একটি স্পিন 1/2 কণা, অর্থাৎ, এটি 1/2ħ এর সমতুল্য স্বকীয় আন্তঃকৌণিক গতিযুক্ত একটি ফেরমিয়ন, যেখানেħ সংকুচিত প্ল্যাঙ্ক ধ্রুবক। নিউট্রন আবিষ্কারের পরে বহু বছর ধরে, এর সঠিক স্পিনটি অস্পষ্ট ছিল। যদিও এটি একটি স্পিন 1/2 ডিরাক কণা হিসাবে ধরে নেওয়া হয়েছিল, তবে নিউট্রন স্পিন 3/2 কণা দীর্ঘস্থায়ী হওয়ার সম্ভাবনা রয়েছে। নিউট্রনের চৌম্বকীয় ভ্রামকের মিথস্ক্রিয়াটি একটি বাহ্যিক চৌম্বকীয় ক্ষেত্রের সাথে পরিশেষে নিউট্রনের স্পিন নির্ধারণ করার জন্য ব্যবহার করা হয়েছিল।[৬৪] ১৯৪৯ সালে, হিউজেস এবং বার্গি পরিমাপক নিউট্রনগুলো একটি ফেরোম্যাগনেটিক আয়না থেকে প্রতিফলিত হয়েছিল এবং আবিষ্কার করেছিল যে প্রতিবিম্বের কৌণিক বিন্যাস স্পিন 1/2 এর সাথে সামঞ্জস্যপূর্ণ।[৬৫] ১৯৫৪ সালে শেরউড, স্টিফেনসন এবং বার্নস্টেইন স্টার্ন-জেরলাচ পরীক্ষায় নিউট্রন প্রযুক্ত করেছিলেন যা নিউট্রন স্পিন অবস্থাকে পৃথক করতে চৌম্বকীয় ক্ষেত্র ব্যবহার করেছিল। তারা এমন দুটি স্পিন অবস্থা রেকর্ড করেছিল, একটি স্পিন 1/2 কণার সাথে সামঞ্জস্যপূর্ণ।[৬৪][৬৬]
ফার্মিয়ন হিসাবে, নিউট্রনপাউলি বর্জন নীতি সাপেক্ষে; দুটি নিউট্রনের সমান কোয়ান্টাম সংখ্যা থাকতে পারে না। এটি অবক্ষয় চাপের উৎস যা নিউট্রন নক্ষত্রকে সম্ভব করে তোলে।
সরলীকৃত শাস্ত্রীয় দৃষ্টিতে নিউট্রনের নেতিবাচক "ত্বক" এটিকে নিউক্লিয়াসে যোগাযোগ করে এমন প্রোটনগুলির প্রতি আকৃষ্ট হতে সহায়তা করে; তবে নিউট্রন এবং প্রোটনের মধ্যে প্রধান আকর্ষণ পারমাণবিক শক্তি দ্বারা, যা বৈদ্যুতিক চার্জের সাথে জড়িত না।মডেল-স্বতন্ত্র বিশ্লেষণের বৈশিষ্ট্য সংবলিত ২০০৭ সালে প্রকাশিত একটি নিবন্ধে সিদ্ধান্ত নেওয়া হয়েছে যে নিউট্রনের একটি ঋণাত্মক চার্জ বহির্মুখী, ধনাত্মক চার্জযুক্ত মাঝারি এবং একটি ঋণাত্মক কোর রয়েছে।[৬৭] একটি সরলীকৃত সর্বোত্তম দৃষ্টিতে, নিউট্রনের ঋণাত্মক "ত্বক" যা এটিকে নিউক্লিয়াসে সংযুক্ত করে এমন প্রোটনগুলোর প্রতি আকৃষ্ট হতে সহায়তা করে; তবে নিউট্রন এবং প্রোটনের মধ্যে প্রধান আকর্ষণ পারমাণবিক বলের মাধ্যমে, যা বৈদ্যুতিক চার্জের সাথে জড়িত না।
নিউট্রনের চার্জ বিন্যাসের সরলীকৃত ডাইপোল দৃষ্টিভঙ্গিও "ব্যাখ্যা করে" যে নিউট্রন চৌম্বকীয় ডাইপোল বিন্দু তার স্পিন কৌণিক গতিবেগ ভেক্টর (প্রোটনের তুলনায়) থেকে বিপরীত দিকে নির্দেশ করে। এটি নিউট্রনকে কার্যত একটি চৌম্বকীয় ভ্রামক দেয় যা ঋণাত্মক চার্জযুক্ত কণার অনুরূপ। চার্জ বন্টনের সমন্বয়ে গঠিত নিরপেক্ষ নিউট্রনের সাথে এটি ধ্রুপদীভাবে পুনরায় মিলিত হতে পারে যেখানে নিউট্রনের ঋণাত্মক উপ-অংশগুলো বিন্যাসের একটি উচ্চতর গড় ব্যাসার্ধ থাকে এবং তাই কণার চৌম্বকীয় ডাইপোল ভ্রামকে আরও বেশি অবদান রাখে, যেগুলো ইতিবাচক অংশগুলোকে করে, গড় প্রায় কাছাকাছি। গড়ের উপর কোরের কাছাকাছি যতটা ধনাত্মক অংশ রয়েছে তার চেয়ে বেশি।
কণা পদার্থবিজ্ঞানের আদর্শ মডেলে নিউট্রনের মধ্যে ধনাত্নক এবং ঋণাত্মক চার্জের একটি ক্ষুদ্র বিভাজনের স্থায়ী বৈদ্যুতিক ডাইপোল ভ্রামকের দিকে নিয়ে যায় বলে অনুমান করা হয়।[৬৮] তবে অনুমিত মান পরীক্ষা-নিরীক্ষার বর্তমান সংবেদনশীলতার চেয়ে অনেক নিচে। কণা পদার্থবিজ্ঞানের বেশ কয়েকটি অমীমাংসিত ধাঁধা থেকে, এটি স্পষ্ট যে আদর্শ মডেলটি সমস্ত কণা এবং তাদের মিথস্ক্রিয়াগুলোর চূড়ান্ত এবং পূর্ণ বিবরণ নয়। আদর্শ মডেলকে ছাড়িয়ে যাওয়া নতুন তত্ত্বগুলো সাধারণত নিউট্রনের বৈদ্যুতিক ডাইপোল ভ্রামকের জন্য অনেক বড় গণনায় নিয়ে যায়। বর্তমানে, প্রথমবারের জন্য একটি সসীম নিউট্রন বৈদ্যুতিক ডাইপোল ভ্রামক পরিমাপ করার চেষ্টায় কমপক্ষে চারটি পরীক্ষা করছে:
অ্যান্টিনিউট্রন হল নিউট্রনের বিপরীত কণা। এন্টিপ্রোটন আবিষ্কার করার এক বছর পরে ১৯৫৬ সালে ব্রুস কর্ক এটি আবিষ্কার করেছিলেন।সিপিটি-প্রতিসাম্য কণা এবং বিপরীত কণার আপেক্ষিক বৈশিষ্ট্যের উপর শক্ত প্রতিবন্ধকতা রাখে, সুতরাং অ্যান্টিনিউট্রনগুলো অধ্যয়ন করে সিপিটি-প্রতিসাম্যের উপর কঠোর পরীক্ষা সরবরাহ করে। নিউট্রন এবং অ্যান্টিনিউট্রনের ভরের মধ্যে ভগ্নাংশের পার্থক্য(৯±৬)×১০−৫ (9 ± 6) × 10-5। যেহেতু পার্থক্যটি শূন্য থেকে কেবলমাত্র প্রায় দুটি আদর্শ বিচ্যুতি, তাই এটি সিপিটি লঙ্ঘনের কোনও দৃঢ় প্রত্যয়ী প্রমাণ দেয় না।[১৩]
বেরিলিয়াম -14 নিউক্লিয়াসের বিচ্ছিন্নতার পর্যবেক্ষণের ভিত্তিতে নিউক্লিয়ার ফিজিক্সের সিএনআরএস ল্যাবরেটরিতে ফ্রান্সিসকো-মিগুয়েল মার্কেসের নেতৃত্বে একটি দল দ্বারা ৪টি নিউট্রন বা টেট্রানিউট্রনগুলোর স্থিতিশীল গুচ্ছগুলোর অস্তিত্বের অনুমান করা হয়েছে। এটি বিশেষত আকর্ষণীয় কারণ বর্তমান তত্ত্বটি পরামর্শ দেয় যে এই গুচ্ছগুলো স্থিতিশীল হওয়া উচিত নয়।
২০১৬ সালের ফেব্রুয়ারিতে, টোকিও বিশ্ববিদ্যালয়ের জাপানি পদার্থবিদ সুসুমু শিমৌরা এবং সহকর্মীরা জানিয়েছেন যে, তারা পরীক্ষামূলকভাবে প্রথমবারের মতো উদ্বেগযুক্ত টেট্রানিউট্রন পর্যবেক্ষণ করেছেন।[৭৪] বিশ্বব্যাপী পারমাণবিক পদার্থবিজ্ঞানীরা বলছেন যে এই আবিষ্কার যদি নিশ্চিত হয়ে যায় তবে পারমাণবিক পদার্থবিজ্ঞানের ক্ষেত্রে একটি মাইলফলক হবে এবং অবশ্যই পারমাণবিক শক্তির বিষয়ে আমাদের উপলব্ধি আরও গভীর করে দেবে।[৭৫][৭৬]
ডাইনিউট্রন হল আরেক প্রকল্পিত কণা। ২০১২ সালে, মিশিগান স্টেট ইউনিভার্সিটির আর্টেমিস স্পাইরো এবং সহকর্মীরা জানিয়েছেন যে তারা প্রথমবারের মতো16Be এর ক্ষয়প্রাপ্তিতে ডাইনিউট্রন নির্গমন পর্যবেক্ষণ করেছে। ডাইনিউট্রন আকার দুটি নিউট্রনের মধ্যে একটি ছোট নির্গমন কোণ দ্বারা প্রমাণিত হয়। লেখকগণ এই ভর অংশের জন্য আদর্শ মিথস্ক্রিয়া ব্যবহার করে শেল মডেল গণনার সাথে ভাল শর্তে দুটি নিউট্রন বিচ্ছেদ শক্তি পরিমাপ করেছেন 1.35 (10) MeV।[৭৭]
অত্যন্ত উচ্চ চাপ এবং তাপমাত্রায় নিউক্লিয়ন এবং ইলেকট্রনগুলো বিশালায়তন নিউট্রোনিক পদার্থের মধ্যে পতিত হবে বলে বিশ্বাস করা হয়, যাকে নিউট্রোনিয়াম বলে। নিউট্রন নক্ষত্রে এটি ঘটবে বলে ধারণা করা হচ্ছে।
নিউট্রন নক্ষত্রের অভ্যন্তরে চরম চাপ নিউট্রনকে ঘনক প্রতিসাম্য হিসাবে বিকৃত করতে পারে, নিউট্রনগুলোর কঠিন প্যাকিংয়ের অনুমতি দেয়[৭৮]
আয়নীকরণের পথ (যেমন একটিক্লাউড চেম্বারে) সন্ধান করে চার্জযুক্ত কণা শনাক্ত করার সাধারণ উপায়গুলো সরাসরি নিউট্রনের জন্য কাজ করে না। নিউট্রনগুলো যা পরমাণুগুলোতে স্থিরভাবে ছড়িয়ে ছিটিয়ে থাকে এমন একটি আয়নীকরণ পথ তৈরি করতে পারে যা শনাক্তযোগ্য, তবে পরীক্ষাগুলো চালানো তত সহজ নয়; নিউট্রন শনাক্তকরণের অন্যান্য উপায়গুলো, এগুলোকে পারমাণবিক নিউক্লিয়ারের সাথে মিথস্ক্রিয়া করার অনুমতি দেওয়ার সমন্বয়ে অধিক ব্যবহৃত হয়। নিউট্রন শনাক্তকরণের জন্য সাধারণত ব্যবহৃত পদ্ধতিগুলো তাই নির্ভরশীল পারমাণবিক প্রক্রিয়া অনুসারে শ্রেণীবদ্ধ করা যেতে পারে, প্রধানত নিউট্রন গ্রহণ বা স্থিতিস্থাপক বিচ্ছুরণ।[৭৯]
নিউট্রন শনাক্তকরণের একটি সাধারণ পদ্ধতিতে নিউট্রন গ্রহণ প্রতিক্রিয়া থেকে মুক্ত হওয়া শক্তিকে বৈদ্যুতিক সংকেতে রূপান্তর করে। কিছু নিউক্লাইডে একটি উচ্চ নিউট্রন গ্রহণ প্রস্থচ্ছেদ থাকে যা একটি নিউট্রন শোষণের সম্ভাবনা। নিউট্রন গ্রহণের পরে, যৌগিক নিউক্লিয়াস আরও সহজে শনাক্তকরণযোগ্য বিকিরণ নির্গত করে, উদাহরণস্বরূপ একটি আলফা কণা, যা পরে শনাক্ত করা হয়। নিউক্লাইড3 He ,6 Li ,10 B ,233 U ,235 U ,237 Np , and239 Pu এই উদ্দেশ্যে দরকারী।
নিউট্রনগুলো নিউক্লিয়াসকে স্থিতিস্থায়ীভাবে ছড়িয়ে দিতে পারে, যার ফলে আঘাত করা নিউক্লিয়াস পুনরুদ্ধার হয়। গৌণভাবে, একটি নিউট্রন একটি ভারী নিউক্লিয়াসের চেয়ে হাইড্রোজেন বা হিলিয়ামের মতো হালকা নিউক্লিয়াসে আরও শক্তি স্থানান্তর করতে পারে। স্থিতিস্থাপক বিচ্ছুরণের উপর নির্ভরশীল শনাক্তকারকগুলোকে দ্রুত নিউট্রন শনাক্তকারী বলা হয়। পুনরুদ্ধার করা নিউক্লিয়াস সংঘর্ষের মাধ্যমে অধিক পরমাণুগুলোকে আয়নিত করতে এবং উত্তেজিত করতে পারে। এইভাবে উৎপাদিত চার্জ এবং/বা স্ফুলিঙ্গায়ন আলো শনাক্ত করা সংকেত উৎপাদন করতে সংগ্রহ করা যেতে পারে। দ্রুত নিউট্রন শনাক্তকরণের একটি বড় চ্যালেঞ্জ একই শনাক্তকারকে গামা বিকিরণ দ্বারা উৎপাদিত ভুল সংকেতগুলো থেকে এই জাতীয় সংকেত শনাক্তকরণ। অণুরন আকৃতির তারতম্যের মতো পদ্ধতিগুলো গামা-রে সংকেত থেকে নিউট্রন সংকেতকে আলাদা করতে ব্যবহার করা যেতে পারে, যদিও কিছু অজৈবিক সিন্টিলিটর ভিত্তিক শনাক্তকারক গুলো[৮০][৮১] উন্নততরভাবে কোনও অতিরিক্ত কৌশল ছাড়াই মিশ্র বিকিরণ ক্ষেত্রগুলোতে সহজাতরূপে শনাক্ত করতে তৈরি করা হয়েছে।
দ্রুত নিউট্রন শনাক্তকারকদের নিয়ামকের প্রয়োজন না পড়ার সুবিধা রয়েছে এবং তাই নিউট্রনের শক্তি, গ্রহণের সময় এবং কিছু ক্ষেত্রে ঘটনার দিক নির্ণয় করতে সক্ষম।
মুক্ত নিউট্রন অস্থির, যদিও তাদের মাত্রার বেশ কয়েকটি বিন্যাস দ্বারা কোনও অস্থির অতিপারমাণবিক কণার দীর্ঘতম অর্ধ-জীবন রয়েছে। তাদের অর্ধ-জীবন এখনও প্রায় ১০ মিনিটের মতো, তাই তারা কেবল এমন উৎস থেকে প্রাপ্ত হতে পারে যা তাদের ক্রমাগত উৎপাদন করে।
প্রাকৃতিক নিউট্রন পটভূমি। মুক্ত নিউট্রনগুলোর একটি ছোট প্রাকৃতিক পরিবেশ প্রবাহ পৃথিবীর সর্বত্রই বিদ্যমান। বায়ুমণ্ডলে এবং সমুদ্রের গভীরে, "নিউট্রন পরিবেশ" বায়ুমণ্ডলের সাথে মহাজাগতিক রশ্মি মিথস্ক্রিয়া দ্বারা উৎপাদিত মিউয়নগুলো দ্বারা সৃষ্ট হয়। এই উচ্চ-শক্তিযুক্ত মিউয়নগুলো পানি এবং মাটির যথেষ্ট গভীরতায় প্রবেশ করতে সক্ষম। সেখানে, পারমাণবিক নিউক্লিয়াকে আঘাত করার সময়, অন্যান্য প্রতিক্রিয়াগুলোর মধ্যে তারা স্পালেশন বিক্রিয়াগুলো সংঘটিত করে যেখানে নিউক্লিয়াস থেকে নিউট্রনকে বিমুক্ত করা হয়। পৃথিবীর ভূত্বকের মধ্যে একটি দ্বিতীয় উৎস হল নিউট্রন মূলত ক্রস্টাল খনিজগুলোতে উপস্থিত ইউরেনিয়াম এবং থোরিয়ামের স্বতঃস্ফূর্ত বিভাজন দ্বারা উৎপাদিত হয়। জৈবিক ঝুঁকি হিসাবে নিউট্রন পরিবেশ যথেষ্ট শক্তিশালী নয় তবে এটি খুব উচ্চ রেজোলিউশন কণা শনাক্তগুলোর পক্ষে খুব গুরুত্বপূর্ণ যেগুলো খুব বিরল ঘটনা যেমন (অনুসিদ্ধান্ত) মিথস্ক্রিয়ার অন্বেষণ করে যা অন্ধকার পদার্থের কণার কারণে হতে পারে।[৭] সাম্প্রতিক গবেষণায় দেখা গেছে যে এমনকি বজ্রপাতে MeV-এর কয়েক দশক পর্যন্ত শক্তি সহ নিউট্রন তৈরি হতে পারে।[৮২] সাম্প্রতিক গবেষণায় দেখা গেছে যে শনাক্তকরণের উচ্চতার উপর নির্ভর করে এই নিউট্রনগুলোর সাবলীলতা প্রতি এমএসে 10−9 and 10−13এর মধ্যে রয়েছে। প্রাথমিকভাবে 20 MeV শক্তি সহ এই নিউট্রনগুলোর শক্তি 1 ms -এর মধ্যে কেভি রেঞ্জে নেমে আসে।[৮৩]
এমনকি শক্তিশালী নিউট্রন বিকিরণটি মঙ্গল গ্রহের পৃষ্ঠে উৎপাদিত হয়, যেখানে বায়ুমণ্ডল মহাজাগতিক রশ্মি মিউয়ন উৎপাদন এবং নিউট্রন-স্পালাইশেন থেকে নিউট্রন তৈরি করতে যথেষ্ট ঘন, তবে উৎপাদিত নিউট্রনগুলোর থেকে উল্লেখযোগ্য সুরক্ষা দিতে যথেষ্ট ঘন নয়। এই নিউট্রনগুলো কেবল সরাসরি নিম্নগামী নিউট্রন বিকিরণ থেকে একটি মার্টিয়ান পৃষ্ঠের নিউট্রন বিকিরণ ঝুঁকি তৈরি করে না তবে মার্টিয়ান পৃষ্ঠ থেকে নিউট্রনের প্রতিবিম্ব থেকেও একটি গুরুত্বপূর্ণ বিপত্তি তৈরি করতে পারে, এই নিউট্রনগুলো কেবল সরাসরি নিম্নগামী নিউট্রন বিকিরণ থেকে মার্টিয়ান পৃষ্ঠ নিউট্রন বিকিরণের ঝুঁকি সৃষ্টি করে না তবে মার্টিয়ান পৃষ্ঠ থেকে নিউট্রনগুলোর প্রতিবিম্ব থেকেও একটি গুরুত্বপূর্ণ ঝুঁকি তৈরি করতে পারে, যা তল থেকে মার্টিয়ান ক্রাফ্ট বা আবাসে ঊর্ধ্বমুখী প্রবেশ করে প্রতিবিম্বিত নিউট্রন বিকিরণ তৈরি করবে।[৮৪]
গবেষণার জন্য নিউট্রনের উৎস। এর মধ্যে রয়েছে নির্দিষ্ট ধরনের তেজস্ক্রিয় ক্ষয় (স্বতঃস্ফূর্ত বিভাজন এবং নিউট্রন নিঃসরণ) এবং নির্দিষ্ট পারমাণবিক বিক্রিয়া থেকে। উপযুক্ত পারমাণবিক বিক্রিক্রিয়াগুলোর মধ্যে ট্যাবলটপের প্রতিক্রিয়া যেমন প্রাকৃতিক আলফা এবং নির্দিষ্ট নিউক্লাইডের গামা বোমা, প্রায়শই বেরিলিয়াম বা ডিউটিরিয়াম এবং প্ররোচিত পারমাণবিক বিভাজন যেমন পারমাণবিক চুল্লীতে ঘটে থাকে। এছাড়াও, উচ্চ-শক্তির পারমাণবিক বিক্রিয়া (যেমন মহাজাগতিক বিকিরণ ধারা বা ত্বরকের সংঘর্ষে ঘটে) লক্ষ্য নিউক্লিয়ায় বিচ্ছিন্ন হয়ে নিউট্রনও তৈরি করে। ছোট (ট্যাবলটপ) কণা ত্বরককে এইভাবে মুক্ত নিউট্রন উৎপাদন করতে অনুকূলিত করা হয়, তাদেরনিউট্রন উৎপাদক বলে।
অনুশীলনে, নিউট্রনগুলোর সর্বাধিক ব্যবহৃত ক্ষুদ্র পরীক্ষাগারে উৎস নিউট্রনের উৎপাদনে শক্তি প্রয়োগ করতে তেজস্ক্রিয় ক্ষয় ব্যবহার করে। নিউট্রন-উৎপাদক রেডিওসোটোপ, ক্যালিফোর্নিয়াম-২২২ ক্ষয় (অর্ধ-জীবন ২.৬৫ বছর) স্বতঃস্ফূর্ত বিভাজনের মাধ্যমে ৩% সময়ে প্রতি ৩.৭ নিউট্রন উৎপাদন করে এবং কেবল এই প্রক্রিয়া থেকে নিউট্রন উৎস হিসাবে ব্যবহৃত হয়। রেডিওআইসোটোপ দ্বারা চালিত পারমাণবিক বিক্রিয়া উৎস (এতে দুটি উপকরণ জড়িত) একটি আলফা ক্ষয়ের উৎস এবং একটি বেরিলিয়াম লক্ষ্য ব্যবহার করে বা অন্যথায় গামা ক্ষয়ের পরে বিটা ক্ষয় হয় এমন একটি উৎস থেকে উচ্চ-শক্তি গামা বিকিরণের একটি উৎস, যা সাধারণ স্থিতিশীল বেরিলিয়ামের সাথে উচ্চ-শক্তি গামা রশ্মির মিথস্ক্রিয়ায় বা ভারী পানিতে ডিউটিরিয়ামের সাথে ফোটোনিট্রন উৎপাদন করে। পরের ধরনের একটি জনপ্রিয় উৎস হল রেডিওএকটিভ অ্যান্টিমনি-১২৪ প্লাস বেরিলিয়াম, ৬০.৯ দিনের অর্ধ-জীবনযুক্ত একটি পদ্ধতি, যা পারমাণবিক চুল্লিতে নিউট্রন দিয়ে সক্রিয় করে প্রাকৃতিক অ্যান্টিমনি (যা ৪২.৮% স্থিতিশীল অ্যান্টিমনি-১২৩) থেকে তৈরি করা যেতে পারে, এটিকে নিউট্রনের সাহায্যে সক্রিয় করে তোলে পারমাণবিক চুল্লি, তারপরে যেখানে নিউট্রন উৎস প্রয়োজন সেখানে নিয়ে যাওয়া হয়।[৮৫]
ফ্রান্সের গ্রেনোবেলে ইনস্টিটিউট ল্যাউ – ল্যাঞ্জেভিন (আইএলএল) - একটি প্রধান নিউট্রন গবেষণা কেন্দ্র
পারমাণবিক বিভাজন চুল্লি প্রাকৃতিকভাবে মুক্ত নিউট্রন উৎপাদন করে; তাদের ভূমিকা হল শক্তি উৎপাদনকারী শৃংখল বিক্রিয়া বজায় রাখা। তীব্রনিউট্রন বিকিরণনিউট্রন সক্রিয়করণ প্রক্রিয়ার মাধ্যমে বিভিন্ন রেডিওআইসোটোপ উৎপাদন করতে ব্যবহার করা যেতে পারে, যা এক ধরনের নিউট্রন গ্রহণ।
পরীক্ষামূলক পারমাণবিক ফিউশন বিক্রিয়াগুলো বর্জ্য পণ্য হিসাবে মুক্ত নিউট্রন উৎপাদন করে। তবে এই নিউট্রনগুলোই অধিকাংশ শক্তি ধারণ করে এবং সেই শক্তিকে একটি দরকারি রূপে রূপান্তরিত করে একটি প্রকৌশল চ্যালেঞ্জকে প্রমাণিত করেছে। নিউট্রন তৈরি করে ফিউশন বিক্রিয়াগুলো তেজস্ক্রিয় বর্জ্য তৈরি করার সম্ভাবনা রয়েছে তবে এই বর্জ্য নিউট্রন-সক্রিয় লাইটার আইসোটোপগুলোর সমন্বয়ে গঠিত, যা বিভাজনের বর্জ্যের জন্য ১০,০০০ বছরের[৮৬] সাধারণ অর্ধ-জীবন তুলনায় তুলনামূলকভাবে সংক্ষিপ্ত (৫০-১০০ বছর) ক্ষয়কাল হয়, যা মূলত আলফা-নির্গমনকারী ট্রান্সোরানিক অ্যাক্টিনাইডগুলোর দীর্ঘ অর্ধ-জীবনের জন্য দীর্ঘস্থায়ী।[৮৭]
নিউট্রন পরিবহন দ্বারা নিউট্রন উৎস থেকে মুক্ত নিউট্রন বীম প্রাপ্ত হয়। তীব্র নিউট্রন উৎস গুলোতে প্রবেশের জন্য, গবেষকদের অবশ্যই একটি বিশেষায়িত নিউট্রন সুবিধায় যেতে হবে যা গবেষণা চুল্লি বা একটি স্পালেশন উৎস পরিচালনা করে।
মোট বৈদ্যুতিক চার্জের নিউট্রনের অভাব তাদের পরিচালনা বা ত্বরান্বিত করা কঠিন করে তোলে। চার্জযুক্ত কণাগুলো ত্বরান্বিত, হ্রাস বা বৈদ্যুতিক বা চৌম্বকীয় ক্ষেত্রগুলো দ্বারা বিভক্ত করা যেতে পারে। নিউট্রনের উপর এই পদ্ধতিগুলোর খুব কম প্রভাব রয়েছে। নিউট্রনের চৌম্বকীয় ভ্রামকের কারণে একজাতীয় চৌম্বকীয় ক্ষেত্রগুলো ব্যবহার করে কিছু প্রভাব পাওয়া যেতে পারে। নিউট্রনগুলো এমন পদ্ধতি দ্বারা নিয়ন্ত্রিত হতে পারে যা মডারেশন, প্রতিবিম্ব এবং বেগ নির্বাচন অন্তর্ভুক্ত করে। ফোটনের জন্যফ্যারাডে প্রভাবের সাথে অনুরূপ পদ্ধতিতে চৌম্বকীয় পদার্থের মাধ্যমে সংক্রমণ দ্বারা তাপীয় নিউট্রনগুলোকে মেরুকরণ করা যায়। চৌম্বকীয় আয়না এবং চৌম্বকীয় ব্যতিচার ফিল্টার ব্যবহার করে ৬-৭ অ্যাংস্ট্রোমের তরঙ্গদৈর্ঘ্যের শীতল নিউট্রন উচ্চ মাত্রার মেরুকরণে বীমগুলোতে উৎপাদিত হতে পারে।[৮৮]
নিউট্রন অনেকগুলো পারমাণবিক বিক্রিয়ায় গুরুত্বপূর্ণ ভূমিকা পালন করে। উদাহরণস্বরূপ, নিউট্রন গ্রহণের ফলে প্রায়শইনিউট্রন সক্রিয়করণ হয়, তেজস্ক্রিয়তা প্ররোচিত করে। বিশেষতপারমাণবিক চুল্লি ওপারমাণবিক অস্ত্রের বিকাশে নিউট্রন এবং তাদের আচরণ সম্পর্কে জ্ঞান গুরুত্বপূর্ণ ছিল। ইউরেনিয়াম-235 এবং প্লুটোনিয়াম-239 এর মতো উপাদানগুলোর বিভাজন তাদের নিউট্রন শোষণের কারণে ঘটে।
ঠান্ডা, তাপ এবং গরম নিউট্রন বিকিরণ সাধারণত নিউট্রন বিচ্ছুরণ সুবিধাগুলোতে প্রযুক্ত হয়, যেখানে ঘন পদার্থ বিশ্লেষণের জন্য বিকিরণটি এক্স-রে ব্যবহার করে একইভাবে ব্যবহৃত হয়। নিউট্রনগুলো বিভিন্ন বিক্ষিপ্ত প্রস্থচ্ছেদ দ্বারা পারমাণবিক শর্তবলির বিপরীতে পরবর্তী পরিপূরক; চৌম্বকত্বের সংবেদনশীলতা; অনমনীয় নিউট্রন বর্ণালীর জন্য শক্তি পরিসীমা; এবং পদার্থের অভ্যন্তরে ঘন ভেদন।
ফাঁকা কাঁচের কৈশিক নলগুলোর মধ্যে বা ডিম্পলড অ্যালুমিনিয়াম প্লেটগুলোর প্রতিচ্ছবি দ্বারা মোট অভ্যন্তরীণ প্রতিবিম্বের উপর ভিত্তি করে "নিউট্রন লেন্স" এর বিকাশ নিউট্রন মাইক্রোস্কোপি এবং নিউট্রন/গামা রশ্মি টোমোগ্রাফিতে চলমান গবেষণাকে পরিচালিত করেছে।[৮৯][৯০][৯১]
নিউট্রনগুলোর একটি বড় ব্যবহার হল উপকরণগুলোর উপাদান থেকে বিলম্বিত এবং দ্রুতিসম্পন্ন গামা রশ্মিকে উত্তেজিত করা। এটিনিউট্রন সক্রিয়করণ বিশ্লেষণ (NAA) এবং দ্রুতিসম্পন্নগামা নিউট্রন সক্রিয়করণ বিশ্লেষণ (PGNAA) এর ভিত্তি গঠন করে। NAA প্রায়শই পারমাণবিক চুল্লিতে উপকরণগুলোর ছোট ছোট নমুনাগুলো বিশ্লেষণ করতে ব্যবহৃত হয় যখন PGNAA প্রায়শইবোর ছিদ্রের চারপাশে অবস্থিত মৃত্তিকা শিলা এবং পরিবাহক বলয়গুলোতে শিল্প বাল্ক উপকরণ বিশ্লেষণ করতে ব্যবহৃত হয়।
নিউট্রন বিকিরণকারীর আরেকটি ব্যবহার হল আলোক নিউক্লিয়ার শনাক্তকরণ, বিশেষত পানির অণুতে পাওয়া হাইড্রোজেন। যখন একটি দ্রুত নিউট্রন একটি হালকা নিউক্লিয়াসের সাথে সংঘর্ষ হয়, তখন এটি তার শক্তির একটি বৃহৎ ভগ্নাংশ হারিয়ে ফেলে। হাইড্রোজেন নিউক্লিয়াকে প্রতিফলিত করার পরে ধীর নিউট্রনগুলো যে হারে শলায় ফিরে আসে তার পরিমাপ করে, একটি নিউট্রন শলা মাটিতে পানির পরিমাণ নির্ধারণ করতে পারে।
যেহেতু নিউট্রন বিকিরণ উভয়ই তীক্ষ্ণ এবং আয়নীকরণ, এটি মেডিকেল চিকিৎসার জন্য ব্যবহার করা যেতে পারে। তবে, নিউট্রন বিকিরণ প্রভাবিত অঞ্চল তেজস্ক্রিয় ছেড়ে যাওয়ার জন্য দুর্ভাগ্যজনক পার্শ্ব-প্রতিক্রিয়া থাকতে পারে। অতএব নিউট্রন টমোগ্রাফি একটি টেকসই চিকিৎসা যন্ত্র নয়।
দ্রুত নিউট্রন থেরাপি ক্যান্সারের চিকিৎসার জন্য সাধারণত 20 MeV-এর বেশি উচ্চ-শক্তিযুক্ত নিউট্রন ব্যবহার করে। ক্যান্সারেরবিকিরণ থেরাপি আয়নীকরণ বিকিরণ কোষগুলোর জৈবিক প্রতিক্রিয়ার উপর ভিত্তি করে চালিত হয়। ক্যান্সারযুক্ত অঞ্চলগুলোর ক্ষতির জন্য যদি বিকিরণটি ছোট মাত্রাকালে নিষ্কৃত করা হয় তবে স্বাভাবিক টিস্যুতে নিজেকে পুনরুদ্ধার করার সময় হবে, যেহেতু টিউমার কোষগুলো প্রায়শই পারে না।[৯২] নিউট্রন বিকিরণ একটি ক্যান্সারজনিত অঞ্চলে গামা বিকিরণের চেয়ে বৃহত্তর আকারের ক্রমকে শক্তি সরবরাহ করতে পারে।[৯৩]
স্বল্প-শক্তিযুক্ত নিউট্রনের বীমগুলো ক্যান্সারের চিকিৎসার জন্যবোরন গ্রহণ থেরাপিতে ব্যবহৃত হয়। বোরন গ্রহণ থেরাপিতে, রোগীকে এমন একটি ওষুধ দেওয়া হয় যার মধ্যে বোরন থাকে এবং এটি লক্ষ্যবস্তু হওয়ার জন্য টিউমারে পছন্দসইভাবে জমে থাকে। তারপরে টিউমারটি খুব কম-শক্তিযুক্ত নিউট্রন (যদিও প্রায়শই তাপীয় শক্তির চেয়ে বেশি) দিয়ে বোমা ফেলা হয় যা বোরন-10 আইসোটোপ দ্বারা বন্দী হয়, যা বোরন-11 এর উত্তেজিত অবস্থা তৈরি করে যা লিথিয়াম-7 এবং একটি আলফা কণা উৎপাদন করার সিদ্ধান্ত নেয় যা ম্যালিগন্যান্ট কোষকে মেরে ফেলতে পর্যাপ্ত শক্তি রাখে, তবে কাছাকাছি কোষগুলোর ক্ষতির জন্য অপর্যাপ্ত পরিসীমা। ক্যান্সারের চিকিৎসার জন্য এই ধরনের থেরাপি প্রয়োগ করার জন্য, প্রতি সেকেন্ডে প্রতি সেমি২-এ এক হাজার মিলিয়ন (১০৯) নিউট্রনের ক্রমের তীব্রতা থাকা নিউট্রন উৎসকে অগ্রাধিকার দেওয়া হয়। এই জাতীয় ফ্লাক্সগুলোর জন্য গবেষণা নিউক্লিয়ার চুল্লি প্রয়োজন।
মুক্ত নিউট্রনের এক্সপোজার বিপজ্জনক হতে পারে, যেহেতু দেহে অণুগুলোর সাথে নিউট্রনের মিথস্ক্রিয়া অণু এবং পরমাণুগুলোতে বাধা সৃষ্টি করতে পারে এবং প্রতিক্রিয়াও সৃষ্টি করতে পারে যা বিকিরণের অন্যান্য রূপগুলোকে বৃদ্ধি করে (যেমন প্রোটন)। বিকিরণ সংরক্ষণে সাধারণ সতর্কতা প্রয়োগ: এক্সপোজার এড়িয়ে চলুন, যথাসম্ভব উৎস থেকে দূরে থাকুন এবং এক্সপোজারের সময়টি সর্বনিম্নে রাখুন।তবে নিউট্রন এক্সপোজার থেকে কীভাবে রক্ষা করা যায় সে সম্পর্কে অবশ্যই বিশেষ চিন্তা দিতে হবে। অন্যান্য ধরনের বিকিরণের জন্য, যেমন, আলফা কণা, বিটা কণা বা গামা রশ্মি, একটি উচ্চতর পারমাণবিক সংখ্যার উপকরণ এবং উচ্চ ঘনত্বের সাথে ভাল চালাইয়ের ব্যবস্থা করে; ঘন ঘন, সীসা ব্যবহার করা হয়। তবে এই পদ্ধতিটি নিউট্রনগুলোর সাথে কাজ করবে না, যেহেতু নিউট্রনগুলোর শোষণ পরমাণু সংখ্যার সাথে সরাসরি বৃদ্ধি পায় না, যেমন এটি আলফা, বিটা এবং গামা বিকিরণের সাথে ঘটে। এর পরিবর্তে নিউট্রনগুলোর সাথে পদার্থের সাথে নির্দিষ্ট মিথস্ক্রিয়াগুলো লক্ষ্য করা উচিত (উপরে শনাক্তকরণের বিভাগটি দেখুন)। উদাহরণস্বরূপ, হাইড্রোজেন সমৃদ্ধ পদার্থগুলো প্রায়ই নিউট্রনের বিরুদ্ধে ঢাল দেওয়ার জন্য ব্যবহৃত হয়, যেহেতু সাধারণ হাইড্রোজেন উভয়ই ছড়িয়ে পড়ে এবং নিউট্রনকে ধীর করে দেয়। এর প্রায়ই অর্থ হল সহজ কংক্রিট ব্লকগুলো এমনকি প্যারাফিন-পূর্ণ প্লাস্টিক ব্লকগুলো আরও ঘন উপকরণগুলোর চেয়ে নিউট্রনগুলোর থেকে সংরক্ষণের পক্ষে বেশি সমর্থ। ধীর হয়ে যাওয়ার পরে, নিউট্রনগুলো এমন একটি আইসোটোপের সাথে শোষিত হতে পারে যা লিথিয়াম-6 এর মতো গৌণ গ্রহণ বিকিরণের কারণ ছাড়াই ধীরে ধীরে নিউট্রনের প্রতি উচ্চ প্রবণতা রাখে।
হাইড্রোজেন সমৃদ্ধ সাধারণ পানি নিউট্রন শোষণকে পারমাণবিক বিভাজন বিক্রিয়ায় প্রভাবিত করে: সাধারণত, নিউট্রন সাধারণ পানির দ্বারা এত দৃঢ়ভাবে শোষিত হয় যে বিভাজনযোগ্য আইসোটোপ দিয়ে জ্বালানী সমৃদ্ধ করা প্রয়োজন।[স্পষ্টকরণ প্রয়োজন] প্রোটিয়ামের (সাধারণ হালকা হাইড্রোজেন) তুলনায় গাঢ় পানিতে ডিউটিরিয়াম নিউট্রনের সাথে খুব কম শোষণের প্রবণতা রয়েছে। নিউট্রন গ্রহণের তুলনায় পারমাণবিক বিভাজনের সম্ভাবনা বাড়াতে ডিউটিরিয়াম তাই CANDU-ধরনের চুল্লিতে ব্যবহৃত হয়।
তাপীয় নিউট্রন হল মুক্ত নিউট্রন যাঁর শক্তিতে কক্ষ তাপমাত্রায় kT=০.০২৫৩eV (৪.০×১০−২১জু) সহ একটিম্যাক্সওয়েল–বোল্টজম্যান বিন্যাস থাকে। এটি বৈশিষ্ট্যযুক্ত (গড় বা মধ্যমা নয়) ২.২ কিমি/সেকেন্ডের গতি দেয়। 'থার্মাল' নামটি তাদের শক্তি কক্ষ তাপমাত্রায় গ্যাস বা উপাদান যেসব তারা প্রসারিত করেছে তা থেকে উপনীত হয়। (অণুর শক্তি এবং গতির জন্যগতিশক্তি তত্ত্ব দেখুন)। নিউক্লিয়াসহ বেশ কয়েকটি সংঘর্ষের পরে (প্রায়ই ১০-২০ এর পরিসীমা), নিউট্রন এই শক্তি স্তরে উপস্থিত হয়, তবে শর্ত থাকে যে তারা যেন শোষিত না হয়।
অনেকগুলো পদার্থে, তাপ নিউট্রন বিক্রিয়াগুলো দ্রুত নিউট্রনের সাথে জড়িত বিক্রিয়াগুলোর তুলনায় অনেক বড় কার্যকর প্রস্থচ্ছেদ দেখায় এবং এবং তাপ নিউট্রন তাই যে কোনো পারমাণবিক নিউক্লিয়ার সাথে সংঘর্ষ হয়, যেন এর দ্বারা আরও সহজেই (যেমন উচ্চতর সম্ভাবনার সাথে) শোষিত হতে পারে, এবং প্রায়ই অস্থির - ফলস্বরূপ রাসায়নিক উপাদানগুলোর আইসোটোপ।
অধিকাংশ বিভাজন চুল্লি নিউট্রন নিয়ামককে ধীর করতে বা পারমাণবিক বিভাজন দ্বারা নির্গত নিউট্রনগুলোকে তাপীয়করণের জন্য ব্যবহার করে যাতে তারা আরও সহজে অধিকৃত হয়ে যায় এবং আরও বিভাজন ঘটায়। অন্যগুলোকে, দ্রুত পালক চুল্লি বলা হয়, যেসব সরাসরি বিভাজন শক্তি নিউট্রন ব্যবহার করে।
শীতল নিউট্রন হল তাপ নিউট্রন যা খুব শীতল পদার্থ যেমন তরল ডিউটেরিয়ামে সাম্যবস্থায় রয়েছে। এই ধরনের একটি শীতল উৎস একটি গবেষণা চুল্লি বা স্পালেশন উৎসের নিয়ামকে রাখা হয়। শীতল নিউট্রন বিশেষভাবে পরীক্ষাগুলোর জন্য মূল্যবান।[৯৪]
শীতল নিউট্রন উৎস তরল হাইড্রোজেনের তাপমাত্রায় প্রায় নিউট্রন সরবরাহ করে
আল্ট্রাকোল্ড নিউট্রন কয়েকটি কেলভিনের তাপমাত্রায় নিম্ন নিউট্রন শোষণকারী প্রস্থচ্ছেদ পদার্থগুলোতে শীতল নিউট্রনের বিচ্ছুরণ ছড়িয়ে দেওয়ার মাধ্যমে উৎপাদিত হয়, যেমন কঠিন ডিউটিরিয়াম[৯৫] বা সুপারফ্লুইড হিলিয়াম।[৯৬] একটি বিকল্প উৎপাদন পদ্ধতি হল ডপলার শিফট ব্যবহার করে নিউট্রনের যান্ত্রিক ক্ষয়।[৯৭][৯৮]
একটি দ্রুত নিউট্রন 1 গিগাবাইট১MeV (১.৬×১০−১৩জু) এর কাছাকাছি গতিশক্তির স্তর সহ একটি মুক্ত নিউট্রন, অতএব ~১৪০০০km/s এর (~ আলোর গতির ৫%) গতি। এগুলোকে নিম্ন-শক্তি তাপ নিউট্রন এবং মহাজাগতিক ধারা বা ত্বরকে উৎপাদিত উচ্চ-শক্তি নিউট্রনগুলো থেকে পৃথক করার জন্য তাদের নামকরণ করা হয়েছেফিশন এনার্জি বা দ্রুত নিউট্রন। পারমাণবিক বিভাজন থেকে যেমন পারমাণবিক প্রক্রিয়া দ্বারা দ্রুত নিউট্রন উৎপাদিত হয়।
বিভাজনে উৎপাদিত নিউট্রনগুলোর উপরে উল্লিখিত হিসাবে, 0 থেকে 14 MeV পর্যন্ত গতিশক্তির ম্যাক্সওয়েল-বোল্টজম্যান বিন্যাস রয়েছে, 2 MeV- এর গড় শক্তি (235U বিভাজন নিউট্রনগুলোর জন্য) এবং কেবল 0.75 MeV-এর একটি প্রক্রিয়া, যার অর্থ এই যে তারা অর্ধেকেরও বেশি দ্রুত গতি অর্জন করতে পারে না (এবং এর ফলে উর্বর উপকরণ যেমন238U and232Th-তে বিভাজন শুরু করার প্রায় কোনো সম্ভাবনা নেই)।
মডারেশন নামক প্রক্রিয়ার মাধ্যমে দ্রুত নিউট্রন তাপ নিউট্রনে তৈরি হতে পারে। এটি নিউট্রন নিয়ামক দিয়ে করা হয়। চুল্লিগুলোতে, সাধারণত গাঢ় পানি, হালকা পানি বা গ্রাফাইট নিউট্রনকে নিয়ামক করতে ব্যবহৃত হয়।
ফিউশন বিক্রিয়া হার তাপমাত্রার সাথে দ্রুত বৃদ্ধি পায় যতক্ষণ না এটি সর্বাধিক হয় এবং তারপরে ধীরে ধীরে বন্ধ হয়। ডি–টি হার নিম্ন তাপমাত্রায় শীর্ষে (প্রায় 70 KeV বা 800 মিলিয়ন কেলভিন) এবং ফিউশন শক্তির জন্য সাধারণত বিবেচিত অন্যান্য বিক্রিয়াগুলোর চেয়ে উচ্চতর মানের হয়
ডি–টি (ডিউটেরিয়াম–ট্রিটিয়াম) ফিউশন হল ফিউশন বিক্রিয়া যা গতিশক্তির 14.1 MeV-এর সাথে সর্বাধিক শক্তিশালী নিউট্রন তৈরি করে এবং আলোর গতির ১৭% গমন করে। ডি–টি ফিউশনও জ্বলনের সবচেয়ে সহজ ফিউশন বিক্রিয়া, ডিউটিরিয়াম এবং ট্রিটিয়াম নিউক্লিয়ায় 14.1 MeV-এর মতো উৎপাদিত হবে মাত্র এক হাজারতম গতিবেগ শক্তি থাকা সত্ত্বেও, নিকট-শীর্ষের হারগুলোতে পৌঁছনো।
14.1 MeV নিউট্রন বিভাজন নিউট্রনের চেয়ে প্রায় ১০ গুণ বেশি শক্তি রয়েছে এবং এটি নন-ফিসাইল ভারী নিউক্লিয়াকে বিভাজনেও খুব কার্যকর এবং এই উচ্চ-শক্তি বিভাজনগুলো নিম্ন-শক্তি নিউট্রন দ্বারা বিভাজনের চেয়ে গড়ে আরও বেশি নিউট্রন উৎপাদন করে। এটি ডি–টি ফিউশন নিউট্রন উৎসগুলোকে যেমন প্রস্তাবিত টোকামাক পাওয়ার চুল্লি ট্রান্সুরানিক বর্জ্য সংক্রমণের জন্য উপযোগী করে তোলে। 14.1 MeV নিউট্রন নিউক্লিয়াস থেকে শিথিল নক করে নিউট্রন তৈরি করতে পারে।
অন্যদিকে, এই খুব উচ্চ-শক্তিযুক্ত নিউট্রন বিভাজন বা বিচ্ছিন্নতা সৃষ্টি না করে কেবল গ্রহণ হওয়ার সম্ভাবনা কম। এই কারণগুলোর জন্য,পারমাণবিক অস্ত্র ডিজাইন আরও বিচ্ছিন্ন হওয়ার জন্য ডি-টি ফিউশন 14.1 MeV নিউট্রনকে ব্যাপকভাবে ব্যবহার করে। ফিউশন নিউট্রন সাধারণভাবে নন-ফিসাইল উপাদানগুলোতে বিচ্ছিন্নতা তৈরি করতে সক্ষম হয় যেমন হ্রাসপ্রাপ্ত ইউরেনিয়াম (ইউরেনিয়াম-২৩৮) এবং এই পদার্থগুলো থার্মোনিউক্লিয়ার অস্ত্রের জ্যাকেটে ব্যবহৃত হয়। ফিউশন নিউট্রন এমন পদার্থগুলোতে বিভাজনের কারণ হতে পারে যেগুলো চুল্লি গ্রেড প্লুটোনিয়ামের মতো প্রাথমিক ফিশন বোমা তৈরি করতে অনুপযুক্ত বা কঠিন। এই ভৌত তথ্যটি সাধারণ অ-অস্ত্র গ্রেডের উপাদানগুলোকে নির্দিষ্ট পারমাণবিক বিস্তার আলোচনা এবং চুক্তিগুলোর জন্য উদ্বেগের কারণ করে।
অন্যান্য ফিউশন বিক্রিয়াগুলো খুব কম শক্তিযুক্ত নিউট্রন উৎপাদন করে। ডি-ডি ফিউশন একটি অর্ধেক সময় 2.45 MeV নিউট্রন এবং হিলিয়াম-3 উৎপাদন করে, এবং ট্রিটিয়াম ও একটি প্রোটন উৎপাদন করে তবে বাকি সময় কোনো নিউট্রন থাকে না। ডি–3 ফিউশন কোনো নিউট্রন তৈরি করে না।
হালকা পানির মধ্যে চুল্লিতে রূপান্তর প্রবাহ, যা একটি তাপ-বর্ণালী চুল্লি
একটি বিভাজন শক্তি নিউট্রন যা ধীর হয়ে গেছে কিন্তু এখনও তাপীয় শক্তিতে পৌঁছেনি তাকে এপিথার্মাল নিউট্রন বলে।
উভয় গ্রহণ এবং বিভাজন বিক্রিয়াগুলোর জন্য প্রস্থচ্ছেদে প্রায়ই এপিথার্মাল শক্তি পরিসরে নির্দিষ্ট শক্তিতে একাধিক অনুরণন শীর্ষ থাকে। দ্রুত নিউট্রন চুল্লিতে এগুলোর তাৎপর্য কম বা একটি ভাল-নিয়ন্ত্রিত তাপীয় চুল্লীতে, যেখানে এপিথার্মাল নিউট্রনগুলো অধিকাংশ নিয়ামকের নিউক্লিয়ার সাথে মিথস্ক্রিয়া করে, ফিসাইল বা উর্বর অ্যাক্টিনাইড নিউক্লাইডগুলোর সাথে নয়। তবে ভারী ধাতব নিউক্লিয়াসহ এপিথার্মাল নিউট্রনের আরও মিথস্ক্রিয়া সহ আংশিকভাবে নিয়ন্ত্রিত চুল্লিতে, প্রতিক্রিয়াশীলতার ক্ষণস্থায়ী পরিবর্তনের বৃহত্তর সম্ভাবনা রয়েছে যা চুল্লি নিয়ন্ত্রণ আরও জটিল করে তুলতে পারে।
উচ্চ-শক্তি নিউট্রনের বিভাজন শক্তি নিউট্রনের চেয়ে অনেক বেশি শক্তি থাকে এবং কণা ত্বরক দ্বারা বা বায়ুমণ্ডলে মহাজাগতিক রশ্মি থেকে গৌণ কণা হিসাবে উৎপন্ন হয়। এই উচ্চ-শক্তিযুক্ত নিউট্রন আয়নায়নের ক্ষেত্রে অত্যন্ত দক্ষ এবং এক্স-রে বা প্রোটনের চেয়ে কোষের মৃত্যুর কারণ হতে পারে।[৯৯][১০০]
↑Hahn, O.; Strassmann, F. (১৯৩৯)। "Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle"[On the detection and characteristics of the alkaline earth metals formed by irradiation of uranium with neutrons]।Die Naturwissenschaften।২৭ (1):১১–১৫।বিবকোড:1939NW.....27...11H।ডিওআই:10.1007/BF01488241।{{সাময়িকী উদ্ধৃতি}}:অজানা প্যারামিটার|lastauthoramp= উপেক্ষা করা হয়েছে (|name-list-style= প্রস্তাবিত) (সাহায্য)
123Glasstone, Samuel; Dolan, Philip J., সম্পাদকগণ (১৯৭৭),The Effects of Nuclear Weapons (3rd সংস্করণ), U.S. Dept. of Defense and Energy Research and Development Administration, U.S. Government Printing Office,আইএসবিএন৯৭৮-১-৬০৩২২-০১৬-৩
12উদ্ধৃতি ত্রুটি:<ref> ট্যাগ বৈধ নয়;2014 CODATA নামের সূত্রটির জন্য কোন লেখা প্রদান করা হয়নি
↑Povh, B.; Rith, K.; Scholz, C.; Zetsche, F. (২০০২)।Particles and Nuclei: An Introduction to the Physical Concepts। Berlin: Springer-Verlag। পৃ.৭৩।আইএসবিএন৯৭৮-৩-৫৪০-৪৩৮২৩-৬।
123Nakamura, K (২০১০)। "Review of Particle Physics"।Journal of Physics G।৩৭ (7A): ০৭৫০২১।বিবকোড:2010JPhG...37g5021N।ডিওআই:10.1088/0954-3899/37/7A/075021।PDF with 2011 partial update for the 2012 edition The exact value of the mean lifetime is still uncertain, due to conflicting results from experiments. The Particle Data Group reports values up to six seconds apart (more than four standard deviations), commenting that "our 2006, 2008, and 2010 Reviews stayed with 885.7±0.8 s; but we noted that in light of SEREBROV 05 our value should be regarded as suspect until further experiments clarified matters. Since our 2010 Review, PICHLMAIER 10 has obtained a mean life of 880.7±1.8 s, closer to the value of SEREBROV 05 than to our average. And SEREBROV 10B[...] claims their values should be lowered by about 6 s, which would bring them into line with the two lower values. However, those reevaluations have not received an enthusiastic response from the experimenters in question; and in any case the Particle Data Group would have to await published changes (by those experimenters) of published values. At this point, we can think of nothing better to do than to average the seven best but discordant measurements, getting 881.5±1.5s. Note that the error includes a scale factor of 2.7. This is a jump of 4.2 old (and 2.8 new) standard deviations. This state of affairs is a particularly unhappy one, because the value is so important. We again call upon the experimenters to clear this up."
↑Pauli, Wolfgang; Hermann, A.; Meyenn, K.v; Weisskopff, V.F (১৯৮৫)। "Das Jahr 1932 Die Entdeckung des Neutrons"।Wolfgang Pauli। Sources in the History of Mathematics and Physical Sciences। খণ্ড৬। পৃ.১০৫–১৪৪।ডিওআই:10.1007/978-3-540-78801-0_3।আইএসবিএন৯৭৮-৩-৫৪০-১৩৬০৯-৫।
↑Harkins, William (১৯২১)। "The constitution and stability of atomic nuclei. (A contribution to the subject of inorganic evolution.)"।Philos. Mag.।৪২ (249): ৩০৫।ডিওআই:10.1080/14786442108633770।
↑Linus Pauling,General Chemistry, second edition, 1970, p. 102
12J. Byrne (২০১১)।Neutrons, Nuclei and Matter: An Exploration of the Physics of Slow Neutrons। Mineola, New York: Dover Publications। পৃ.২৮–৩১।আইএসবিএন৯৭৮-০৪৮৬৪৮২৩৮৫।
James Byrne,Neutrons, Nuclei and Matter: An Exploration of the Physics of Slow Neutrons. Mineola, New York: Dover Publications, 2011.আইএসবিএন০৪৮৬৪৮২৩৮৩.