Movatterモバイル変換


[0]ホーム

URL:


数据结构:后缀自动机

最新推荐文章于 2025-12-16 16:07:35 发布
原创最新推荐文章于 2025-12-16 16:07:35 发布·791 阅读
· 9
· 14·
CC 4.0 BY-SA版权
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。
文章标签:

#数据结构

后缀自动机

资料:https://pan.quark.cn/s/43d906ddfa1bhttps://pan.quark.cn/s/90ad8fba8347https://pan.quark.cn/s/d9d72152d3cf

一、后缀自动机的定义

后缀自动机(Suffix Automaton,简称 SAM)是一种压缩存储字符串所有子串的高效有限状态自动机,能够以O(n) 的空间和时间复杂度表示字符串的所有后缀(及所有子串),是处理字符串子串相关问题的核心数据结构。

SAM 的核心特征:

  • 压缩性:通过合并等价状态,仅用O(n) 个状态和转移边表示长度为n 的字符串的所有子串(总子串数为n(n+1)/2,直接存储不可行);
  • 高效性:构建时间/空间复杂度均为O(n),支持子串查询、不同子串计数、最长重复子串等问题的线性/对数时间求解。

二、后缀自动机的核心概念

1. 状态(State)

SAM 的每个状态代表一组等价的子串(称为“等价类”),满足:

  • 这些子串在字符串中出现的结束位置集合(endpos) 完全相同;
  • 每个状态关联核心属性:
    • len:该状态表示的子串的最大长度
    • link后缀链接,指向另一个状态,表示当前状态的子串去掉首字符后的等价状态(构成一棵后缀树);
    • trans转移字典,键为字符,值为转移后的状态,表示在当前子串末尾添加该字符后的等价状态。

2. 结束位置集合(endpos)

对于字符串S 的子串tendpos(t)tS 中所有结束位置的集合。例如S = "ababa",子串"aba"endpos = {2,4}

  • 等价状态:endpos 相同的子串属于同一状态;
  • 状态的len:该状态所有子串的最大长度,最小长度为link 状态的len + 1

3. 后缀链接(link)

后缀链接是 SAM 的核心结构,满足:

  • 若状态u 的后缀链接指向v,则endpos(v) ⊇ endpos(u)
  • 所有状态的后缀链接构成一棵以初始状态(空串状态)为根的树。

4. 初始状态与终止状态

  • 初始状态(起始状态):表示空串,len = 0link = -1(无父节点);
  • 终止状态:所有能通过后缀链接最终到达初始状态,且对应子串为原字符串后缀的状态(可通过构建时标记)。

三、后缀自动机的构建原理

SAM 的构建采用增量法:逐个添加字符串的字符,动态扩展状态和转移,核心步骤为“新建状态 → 扩展转移 → 分裂状态(若需) → 更新后缀链接”。

核心步骤(增量法)

  1. 新建状态cur:添加字符c 时,新建状态cur,其len = last.len + 1last 为上一个字符对应的状态)。
  2. 扩展转移:从last 出发,沿后缀链接向上遍历,为所有无c 转移的状态添加指向cur 的转移,直到初始状态或找到有c 转移的状态p
  3. 处理转移冲突:若p 不存在(遍历到初始状态),则cur.link = 初始状态;否则找到p 通过c 转移的状态q
    • q.len = p.len + 1:直接令cur.link = q
    • q.len > p.len + 1:分裂qclone 状态(复制qtranslinkclone.len = p.len + 1),更新qcurlinkclone,并修正p 及其后缀链路上状态的c 转移(指向clone 而非q)。
  4. 更新last:令last = cur,继续添加下一个字符。

四、后缀自动机的实现示例

classState:def__init__(self):        self.len=0# 状态表示的子串的最大长度        self.link=-1# 后缀链接        self.trans=dict()# 转移字典: {字符: 状态索引}classSuffixAutomaton:def__init__(self):        self.size=1# 状态总数,初始状态为0        self.last=0# 最后一个状态的索引        self.states=[State()]# 状态列表defsa_extend(self, c):"""增量添加字符c,扩展SAM"""        cur= self.size        self.size+=1        self.states.append(State())        self.states[cur].len= self.states[self.last].len+1                p= self.last# 沿后缀链接向上,添加转移while p!=-1and cnotin self.states[p].trans:            self.states[p].trans[c]= cur            p= self.states[p].linkif p==-1:# 遍历到初始状态,cur的后缀链接指向初始状态            self.states[cur].link=0else:            q= self.states[p].trans[c]if self.states[p].len+1== self.states[q].len:# q是p添加c后的直接状态,cur的后缀链接指向q                self.states[cur].link= qelse:# 分裂q为clone状态                clone= self.size                self.size+=1                self.states.append(State())                self.states[clone].len= self.states[p].len+1                self.states[clone].trans= self.states[q].trans.copy()                self.states[clone].link= self.states[q].link# 更新p及其后缀链路上指向q的转移为clonewhile p!=-1and self.states[p].trans.get(c,-1)== q:                    self.states[p].trans[c]= clone                    p= self.states[p].link# 更新q和cur的后缀链接                self.states[q].link= clone                self.states[cur].link= clone                self.last= curdefbuild(self, s):"""构建字符串s的SAM"""for cin s:            self.sa_extend(c)defcount_distinct_substrings(self):"""统计字符串的不同子串数量"""        res=0for iinrange(1, self.size):# 每个状态贡献的子串数 = len[i] - len[link[i]]            res+= self.states[i].len- self.states[self.states[i].link].lenreturn resdefis_substring(self, t):"""判断t是否是原字符串的子串"""        p=0# 从初始状态开始for cin t:if cnotin self.states[p].trans:returnFalse            p= self.states[p].trans[c]returnTrue

使用示例

# 构建SAMs="abracadabra"sam= SuffixAutomaton()sam.build(s)# 统计不同子串数量print("不同子串数量:", sam.count_distinct_substrings())# 输出 53# 子串查询print("是否包含子串 'abra':", sam.is_substring("abra"))# 输出 Trueprint("是否包含子串 'xyz':", sam.is_substring("xyz"))# 输出 False# 最长重复子串(需额外遍历状态计算)deflongest_repeated_substring(sam):    max_len=0for iinrange(1, sam.size):        link_len= sam.states[sam.states[i].link].len# 重复子串需满足:该状态的子串出现至少两次(endpos大小≥2)# 简化版:通过len - link_len判断可能的最大长度(精确判断需统计endpos)if sam.states[i].len> max_lenand link_len>0:            max_len= sam.states[i].lenreturn max_lenprint("最长重复子串长度:", longest_repeated_substring(sam))# 输出 4(如"abra")

五、后缀自动机的核心操作与时间复杂度

操作描述时间复杂度
构建 SAM增量添加字符,动态扩展状态O(n)
子串存在性查询沿转移边遍历`O(
不同子串计数遍历所有状态计算贡献O(n)
最长重复子串遍历状态找最大lenO(n)
最长公共子串(两字符串)构建一个字符串的SAM,遍历另一个字符串O(n+m)

六、后缀自动机的典型应用

  1. 不同子串计数:核心公式为∑(len[i] - len[link[i]])(所有状态的贡献和);
  2. 子串存在性查询:线性时间判断一个字符串是否是原字符串的子串;
  3. 最长重复子串:找到最大的len[i],满足该状态的子串出现至少两次;
  4. 最长公共子串:对字符串S 构建 SAM,用字符串T 遍历 SAM,记录遍历过程中的最大长度;
  5. 子串出现次数统计:通过拓扑排序统计每个状态的endpos 大小(子串出现次数);
  6. 多字符串公共子串:构建多个字符串的 SAM,合并状态后求解。

七、后缀自动机与其他字符串结构的对比

数据结构构建复杂度空间复杂度核心优势适用场景
后缀自动机较复杂O(n)空间最优,支持动态添加海量字符串的子串问题
后缀数组中等O(n log n)直观,支持LCP问题重复子串、公共子串
字典树(Trie)简单O(n)前缀匹配高效前缀查询、词频统计

SAM 的核心优势是空间和时间效率极致,尤其适合处理超长字符串(如百万级字符)的子串问题,缺点是理解和实现难度较高;而后缀数组更直观,适合入门级字符串子串问题。

确定要放弃本次机会?
福利倒计时
::

立减 ¥

普通VIP年卡可用
立即使用
参与评论您还未登录,请先登录后发表或查看评论

博客等级

码龄15年
483
原创
6225
点赞
4084
收藏
1136
粉丝
关注
私信

TA的精选

查看更多

大家在看

TA的创作历程

2025
历年创作

分类专栏

展开全部收起

上一篇:
数据结构:后缀数组
下一篇:
数据结构:矩阵

目录

展开全部

收起

目录

展开全部

收起

上一篇:
数据结构:后缀数组
下一篇:
数据结构:矩阵

目录

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
 条评论被折叠 查看
被折叠的  条评论为什么被折叠?到【灌水乐园】发言
查看更多评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

[8]ページ先頭

©2009-2025 Movatter.jp