
作者: 程序员光剑
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
用 python 和 LLM API 实现: 输入一个 pdf (英文), 转换成 docx 文件后,再翻译成 中文。 要完整保留 pdf 中的原始图片和数学公式。
本文介绍了一个完整的PDF转DOCX并翻译成中文的Python解决方案。项目采用模块化设计,包含PDF转DOCX、LLM翻译和配置文件等模块。关键技术点包括:1) 使用pdf2docx库保留PDF中的图片和数学公式;2) 支持多种LLM API(如OpenAI、Claude等)进行专业翻译;3) 模块化设计便于扩展和维护。系统能够完整保留原始文档格式,特别适合学术论文和技术文档的翻译需求。原创 2025-12-05 00:14:14 · 191 阅读 · 0 评论【光子AI / Photon AI】怎样用 python 完整实现:一张自己的照片,一段文本,生成一个数字人口播视频
摘要:使用Python创建数字人视频 本项目展示如何使用Python将静态照片和文本转换为会说话的数字人视频。核心流程分为两个步骤: 文本转语音(TTS):使用gTTS库将输入文本转换为自然语音的音频文件。 视频生成:利用开源项目SadTalker,将照片与生成的音频同步,创建具有唇形同步、表情和头部动作的视频。 项目推荐在Google Colab环境中运行,利用其免费GPU资源简化复杂环境配置。本地运行则需要NVIDIA显卡和配置好的PyTorch环境。最终生成的视频效果接近专业水平,适用于自动播报、虚拟原创 2025-11-17 11:54:44 · 411 阅读 · 0 评论从 0 到 1 打造一个“超级 IP 智能体”
这篇文章介绍了一个"超级IP智能体"的技术架构和实现方案。该项目构建了一个多模态内容生成流水线,主要流程包括:1)视频下载和音频提取;2)语音识别转换为文字稿;3)使用大语言模型对文案进行仿写和润色;4)语音合成;5)数字人口型同步;6)视频后期处理。文章详细介绍了如何使用Python和Hugging Face开源模型搭建环境,并重点展示了视频下载、语音识别(采用Whisper模型)以及文案仿写(使用Qwen1.5-7B-Chat模型)等核心模块的代码实现。所有处理均针对M3芯片Mac优原创 2025-11-13 19:19:52 · 190 阅读 · 0 评论【深度解析】AI Agent 上下文工程(Context Engineering)的核心价值!在电商客服场景中,如何构建有效的上下文窗口(如用户历史订单、咨询记录)以提升 Agent的回答质量?
深度解析上下文工程在电商客服中的应用 本文探讨了上下文工程在优化电商客服Agent回答质量中的关键作用。随着大模型窗口扩展,上下文对齐成为落地瓶颈。文章提出一套系统方法论: 核心问题:客服Agent因上下文缺失导致回答不准确,表现为重复追问、答非所问等,严重影响效率和用户体验。 解决方案: 四阶九步构建法:从上下文建模到投放,涵盖实体设计、多路召回、动态排序和记忆压缩。 开源框架Context4CS:集成Python、Milvus等技术,支持多租户和多模态数据。 关键价值:提升上下文召回率、信噪比和利用率,原创 2025-11-08 04:11:51 · 559 阅读 · 0 评论LangGraph react agent 执行过程原理详解
三、节点级行为agent 节点(call_model)① 接收当前 state。② 把系统提示(system_prompt)拼到 messages 最前面:“你是助手,可用工具 xxx,尽量调用后再回答。③ 调用 ChatOpenAI(或任意支持 function-calling 的模型)。④ 返回 {“messages”: [response]} —— 若模型想调用工具,response 里会带 tool_calls 列表。tools 节点(ToolNode)原创 2025-10-15 12:05:50 · 1639 阅读 · 1 评论LLM Function calling 原理与实例讲解
如需了解如何在实际项目中实现 Function Calling(如 OpenAI 的接口设计、函数描述格式、错误处理等),我可以继续为你展开。是否需要?LLM 本身不跑天气 API,也不发邮件,它只负责“写调用指令”。真正动手的是后端代码;LLM 把“说人话”与“用工具”分两次完成。只要提前把“说明书”给够,LLM 就能像“调兵遣将”一样随意组合多个函数。这就是 Function Calling 的完整现场。想亲手跑一遍?原创 2025-09-17 01:25:25 · 918 阅读 · 0 评论利用智能PPT转视频工具实现日入1000元的10种变现方法
以上方法可单独或组合操作,核心逻辑是**“低成本生产+多渠道分发+差异化定价”**。例如,结合网页6的低价铺量策略与网页4的矩阵运营,可实现规模化收益。对于新手,建议从定制服务或社群运营起步,逐步扩展至自动化变现。原创 2025-05-03 12:08:01 · 841 阅读 · 0 评论大型语言模型(LLM)评测研究最新进展
本报告全面总结了2023年至今大语言模型(LLM)评测领域的最新研究成果、主流评测框架、方法论创新、行业进展以及未来发展趋势。随着LLM技术的迅猛发展,评测体系也在不断完善与革新,从单一能力评测向多维度、多模态、更动态的评测方向发展。当前评测面临数据污染、评估方法不稳定、复现困难等挑战,未来将朝着自动化评测方法、更细粒度评测和多模态评测方向发展。原创 2025-04-03 14:19:21 · 371 阅读 · 0 评论应用 AI 大模型进行 CSDN 博客 AI 写作:CSDN 账号矩阵打造,自动发送文章,付费专栏矩阵生态设计,实现月入 10w 完整创业方案
AI大模型是指具有巨大参数量的深度学习模型,通常包含数十亿甚至数万亿个参数。根据输入数据类型的不同,大模型主要可以分为语言大模型(NLP)、视觉大模型(CV)和多模态大模型三大类。这些模型通过模拟人脑的神经元结构,对输入数据进行多层抽象和处理,从而实现对复杂任务的学习和预测。大模型的训练过程包括数据预处理、神经网络构建、前向传播、激活函数、损失函数、优化算法和训练验证等步骤。大模型的特点包括泛化性、通用性、涌现性、高精度和智能化等,广泛应用于自然语言处理、计算机视觉和自主驾驶等多个领域。原创 2025-04-02 11:42:27 · 211 阅读 · 0 评论万字详解:基于 AI 推理大模型 LLM Multi - Agent 系统架构实现电商运营数据自动化分析报表生成
基于AI推理大模型LLM的Multi - Agent系统架构主要包括以下几个部分:用户接口层、任务分配层、多个功能Agent层、数据存储与管理层以及LLM推理引擎。用户通过用户接口层提出电商运营数据分析报表的需求,任务分配层将任务分解并分配给相应的功能Agent,功能Agent在LLM推理引擎的协助下从数据存储与管理层获取数据进行处理,最后生成报表返回给用户。基于AI推理大模型LLM的Multi - Agent系统架构为电商运营数据自动化分析报表生成提供了一种强大而灵活的解决方案。原创 2025-03-20 20:56:49 · 693 阅读 · 0 评论Spring AI Alibaba 快速入门开发实战
该指南通过整合Spring Boot 3.x、Spring AI Alibaba及阿里云AI服务,提供了从环境搭建到智能应用部署的全链路实战方案。开发者可根据实际需求扩展图像生成、数据分析等AI能力。原创 2025-03-20 16:50:55 · 569 阅读 · 0 评论中国 AI Agent 行业研究:智能体落地千行百业,引领智能化革命的新引擎
LLM给AI Agent底层提供了一个突破性技术方案:LLM带来了深度学习新范 式,思维链和强大的自然语言理解能力有望让Agent 具备强大的学习能力和 迁移能力,从而让创建广泛应用且实用的Agent成为可能 LLM的框架优势:过去等强化学习基于深度学习框架可让Agent学到技能, 但Agent的泛化性较差,往往用于非常窄的特定领域,例如用在游戏或低维 层面的控制或计划,标志性应用是围棋领域的AlphaGo。相较于嵌入模式、副驾驶模式,智能体模式的人机协同模式更为高效,或将成为未来人机协同的主要模式。原创 2025-02-14 10:44:07 · 421 阅读 · 0 评论谷歌《AI Agent白皮书》,简单易懂的智能体认知架构
人类在处理杂乱无章的模式识别任务方面非常擅长。然而,他们往往会借助工具,例如书籍、Google 搜索或计算器,来补充已有知识,从而得出最终结论。同样,生成式 AI (Generative AI) 模型也可以通过训练学会使用工具,以获取实时信息或提供实际行动建议。比如,一个模型可以使用数据库检索工具来获取特定信息,例如客户的购买记录,从而生成个性化的购物推荐。又或者,模型可以根据用户的需求调用 API,完成发送邮件回复同事或代表用户进行金融交易等操作。原创 2025-01-12 13:41:27 · 447 阅读 · 1 评论第 6 章:Prompt 提示词工程最佳实践与效果评估优化
Prompt工程是人工智能领域中一个新兴且重要的分支,它专注于设计和优化用于引导AI模型(特别是大型语言模型)生成所需输出的文本提示。Prompt工程是一种技术,通过精心设计输入提示来引导AI模型生成特定的输出。它包括创建、优化和评估这些提示的过程,以提高模型性能和输出质量。提示设计:创建清晰、具体的指令上下文提供:为模型提供必要的背景信息任务定义:明确指定所需完成的任务输出格式化:指定期望的输出格式文本摘要任务要求模型生成简洁而全面的内容概述。指定摘要的长度和风格。原创 2024-12-26 16:06:36 · 578 阅读 · 0 评论传统计算机自动化系统、人类智能系统和AI Agent系统在自治和自主行动能力对比剖析
为了更好地理解和比较这三种系统,我们将开发一个模拟环境,在该环境中可以并行运行传统自动化系统、人类智能系统(通过模拟)和AI Agent系统。这个项目将命名为"TriSys比较模拟器"。原创 2024-12-22 16:16:07 · 158 阅读 · 0 评论AI Agent 在工业自动化与预测性维护中的应用
开发一个基于AI的智能系统,通过分析设备运行数据,预测潜在故障,实现预防性维护,减少停机时间。原创 2024-12-22 16:03:20 · 398 阅读 · 0 评论AI Agent在医疗诊断辅助中的应用
开发一个基于深度学习的智能系统,用于分析肺部CT图像,辅助医生进行肺部疾病(如肺炎、肺癌等)的早期诊断。开发一个基于AI的智能系统,通过分析大量病历数据,为医生提供个性化的治疗方案建议。原创 2024-12-22 15:51:58 · 479 阅读 · 0 评论AI Agent 在金融风控与投资分析领域的应用
信用风险评估是金融机构最关键的业务之一。传统的信用评分模型往往依赖有限的数据源和静态规则,难以适应快速变化的金融环境。AI Agent通过分析大量结构化和非结构化数据,可以提供更准确、动态的信用风险评估。开发一个基于AI的智能反欺诈系统,用于实时检测和预防金融交易中的欺诈行为。原创 2024-12-22 15:45:25 · 517 阅读 · 0 评论Qlib:微软开源的AI量化投资平台 极简入门快速上手教程:使用 Qlib 进行中芯国际股价回测和预测
Qlib是由微软开源的面向AI量化投资的工具包。它提供了构建量化投资模型所需的基础设施,旨在帮助研究者和从业人员更高效地进行量化研究和策略开发。原创 2024-12-22 04:08:35 · 4172 阅读 · 0 评论《基于LLM的AI Agent 分析中国未来30年经济增长和投资战略》AI Agent系统设计与开发与经济增长趋势分析AI Agent设计
"中国经济数据预处理平台"是一个综合性的数据处理工具,旨在为经济分析和预测提供高质量、标准化的数据集。该平台集成了多源数据采集、清洗、转换和整合功能,能够自动化处理大量经济时间序列数据,为后续的AI分析提供可靠的数据基础。"智能经济指标体系构建器"是一个创新性的分析工具,旨在帮助经济学家和政策制定者快速构建和优化经济指标体系。该工具结合了机器学习算法和经济学理论,能够自动化地从大量经济数据中筛选关键指标,构建复合指标,并动态调整指标权重。原创 2024-12-20 15:58:42 · 261 阅读 · 0 评论LLM 大模型应用开发实践极简教程
1.1.1 AI Agent的定义AI Agent(人工智能代理)是一种能够感知环境、做出决策并采取行动以实现特定目标的智能系统。它是人工智能研究和应用的重要组成部分,代表了向更高级、更自主的AI系统发展的趋势。自主性:能够在没有直接人类干预的情况下独立运作。反应性:能够感知环境并及时做出响应。主动性:不仅被动反应,还能主动采取行动以实现目标。社交能力:能够与其他Agent或人类进行交互和协作。f : P* → A其中,P*表示所有可能的感知序列,A表示Agent可以采取的行动集合。原创 2024-12-08 02:36:34 · 327 阅读 · 0 评论LLM-Based AI Agent 核心思想、发展历史、未来趋势【资料大全】
复旦大学NLP团队在其综述论文中提出,LLM-based Agent由大脑、感知和行动大脑: 由LLM组成,负责存储记忆和知识,以及信息处理、决策等功能感知模块: 负责获取环境信息,将多模态输入转换为可用提示行动模块: 执行决策,通过具身能力和工具使用与环境进行交互这一架构与人类智能具有显著的相似性,展现了AI Agent在模仿人类智能方面的进展。原创 2024-12-07 02:14:55 · 888 阅读 · 0 评论【精选文章集锦】AI 场景导购助手评测集标注工具开发和自动化评测系统构建
随着人工智能技术的快速发展,AI场景导购助手已经成为电商平台提升用户体验和销售转化率的重要工具。为了评估AI导购助手的性能表现,需要构建一套完善的评测集标注工具和自动化评测系统。本文将详细探讨AI场景导购助手评测集标注工具的开发流程以及自动化评测系统的构建方法。AI场景导购助手评测涉及以下几个核心概念:下图展示了这些概念之间的关系:AI场景导购助手评测集标注工具标注数据自动化评测系统评测结果3. 核心算法原理 & 具体操作步骤3.1 算法原理概述AI场景导购助手通常基于深度学习算法,如Transfor原创 2024-09-20 11:28:49 · 530 阅读 · 0 评论机器人进程自动化(RPA)与AI代理工作流的融合
随着数字化转型的加速,企业面临着日益复杂的业务流程,这些流程涉及大量的规则遵从、数据处理和决策制定。传统的人工操作在面对重复性高、规则性强的任务时,不仅效率低下,而且容易出错。为了解决这些问题,自动化的解决方案应运而生,其中Robotic Process Automation(RPA)与Artificial Intelligence Agents(AI代理)成为两种关键技术。融合RPA与AI代理的算法通常基于模型驱动的方法,包括但不限于强化学习、规则引擎、专家系统和深度学习技术。原创 2024-09-19 03:39:38 · 607 阅读 · 0 评论【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解(使用 Golang 实现)【6】
在当今信息爆炸的时代,用户面临着海量的内容和选择。如何从中快速找到自己感兴趣的信息,成为了一个巨大的挑战。推荐系统应运而生,它通过分析用户的行为、兴趣和偏好,为用户提供个性化的内容推荐,大大提高了用户体验和内容消费效率。Elasticsearch作为一个强大的分布式搜索和分析引擎,不仅在全文搜索领域表现出色,还可以用于构建高效的推荐引擎。本文将深入探讨如何基于Elasticsearch实现一个功能完善的推荐引擎,包括其原理、详细实现方案以及相关的源代码解析。Elasticsearch的基本概念和特性。原创 2024-09-09 01:25:29 · 2031 阅读 · 0 评论【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解【5】
在当今数字化时代,个性化推荐系统已成为各大互联网公司提升用户体验、增加用户粘性的重要工具。随着数据量的爆炸式增长和用户对实时性要求的提高,传统的推荐系统架构面临着巨大的挑战。Elasticsearch作为一个分布式、高性能的搜索和分析引擎,凭借其强大的全文检索能力和灵活的数据模型,为构建高效的推荐引擎提供了新的可能性。本文将深入探讨如何基于Elasticsearch构建一个全面而高效的推荐引擎,涵盖从理论基础到实际实现的各个方面。原创 2024-09-09 01:16:46 · 1981 阅读 · 0 评论【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解【4】
在当今信息爆炸的时代,用户面临着海量的内容和选择。如何从中快速找到自己感兴趣的信息,成为了一个巨大的挑战。推荐系统应运而生,它通过分析用户的行为、兴趣和偏好,为用户提供个性化的内容推荐,大大提高了用户体验和内容消费效率。Elasticsearch作为一个强大的分布式搜索和分析引擎,不仅在全文搜索领域表现出色,还可以用于构建高效的推荐引擎。本文将深入探讨如何基于Elasticsearch实现一个功能完善的推荐引擎,包括其原理、详细实现方案以及相关的源代码解析。Elasticsearch的基本概念和特性。原创 2024-09-09 01:09:43 · 1194 阅读 · 0 评论【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解【3】
在当今数字化时代,个性化推荐系统已成为众多在线平台不可或缺的组成部分。从电子商务到社交媒体,从新闻资讯到音视频流媒体,推荐引擎在提升用户体验、增加用户黏性和促进商业价值方面发挥着至关重要的作用。随着数据量的爆炸式增长和用户对实时、精准推荐需求的不断提高,传统的推荐系统架构面临着巨大的挑战。Elasticsearch作为一个分布式、RESTful风格的搜索和分析引擎,以其强大的全文搜索能力、灵活的数据模型和优秀的可扩展性而闻名。原创 2024-09-09 01:06:15 · 1441 阅读 · 0 评论【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解【2】
推荐引擎在现代互联网应用中扮演着至关重要的角色。无论是电商平台、社交媒体还是内容分发平台,推荐引擎都在帮助用户发现感兴趣的内容、商品或服务。Elasticsearch作为一个强大的分布式搜索引擎,因其高效的全文搜索和分析能力,成为实现推荐引擎的理想选择。推荐算法主要分为基于内容的推荐、协同过滤推荐和混合推荐。基于内容的推荐通过分析内容特征进行推荐,协同过滤推荐通过分析用户行为进行推荐,混合推荐则结合了两者的优点。本文详细介绍了基于Elasticsearch实现推荐引擎的原理、算法和实现方法。原创 2024-09-09 00:55:47 · 713 阅读 · 0 评论【大数据AI人工智能之推荐系统】基于Elasticsearch实现推荐引擎的原理与详细实现方案以及源代码详解(Java实现)【1】
随着互联网和移动互联网的快速发展,信息过载问题日益严重。用户面对海量的信息,往往难以找到自己真正感兴趣的内容。推荐系统应运而生,旨在根据用户的历史行为、兴趣偏好等信息,为用户推荐其可能感兴趣的内容,从而解决信息过载问题,提升用户体验和平台效益。Elasticsearch 作为一个开源的分布式搜索和分析引擎,以其强大的搜索能力、高性能、可扩展性等特点,被广泛应用于各种场景,包括电商网站的商品搜索、社交平台的用户搜索、日志分析等等。同时,Elasticsearch 也为构建推荐系统提供了强大的支持。原创 2024-09-09 00:52:57 · 1662 阅读 · 2 评论SimCLR原理与代码实例讲解
SimCLR原理与代码实例讲解1. 背景介绍1.1 问题的由来在深度学习时代,特征学习成为提升模型性能的关键。尤其是对于无标签数据,自动学习有意义的特征变得至关重要。自监督学习(Self-supervised Learning)作为一种有效原创 2024-08-24 02:02:10 · 605 阅读 · 0 评论Stochastic Gradient Descent (SGD) 原理与代码实战案例讲解
Stochastic Gradient Descent (SGD) 原理与代码实战案例讲解关键词:SGD(随机梯度下降)最小化损失原创 2024-08-24 02:02:42 · 961 阅读 · 0 评论Transformer大模型实战 字节对编码
Transformer大模型实战:字节对编码1. 背景介绍1.1 问题的由来随着大规模预训练模型的涌现,诸如BERT、GPT系列、以及通用地表级语言模型(LLMs),人们开始探索如何更有效地利用这些模型进行实际任务处理。字节对原创 2024-08-24 02:03:13 · 436 阅读 · 0 评论Transformer原理与代码实例讲解
Transformer原理与代码实例讲解关键词:自注意力机制(Self-Attention)多头自注意力(Multi-Head Attention)多层感知机(MLP)编码器(Encoder)原创 2024-08-24 02:04:16 · 476 阅读 · 0 评论Transformer大模型实战 Transformer 概览
Transformer大模型实战 Transformer 概览1. 背景介绍1.1 问题的由来在深度学习领域,尤其是自然语言处理(NLP)任务中,传统的方法如循环神经网络(RNN)和长短时记忆网络(LSTM)原创 2024-08-24 02:03:45 · 629 阅读 · 0 评论ViTDet原理与代码实例讲解
1. 背景介绍1.1 问题的由来在计算机视觉领域,目标检测一直是一个重要的研究课题。传统的目标检测方法主要依赖于手工设计的特征和滑动窗口的方式进行目标检测,这种方法在实际应用中存在着诸多问题,例如计算复杂度高、检测效果差等。随着深度学习的发展,基于深度学习的目标检测方法逐渐取代了传统的目标检测方法,并原创 2024-08-24 02:04:48 · 633 阅读 · 0 评论MapReduce 原理与代码实例讲解
MapReduce 原理与代码实例讲解关键词:分布式计算并行处理大数据处理数据集划分减少数据传输量提高计算效率1.原创 2024-08-24 01:57:26 · 736 阅读 · 0 评论OCRNet原理与代码实例讲解
OCRNet原理与代码实例讲解1. 背景介绍1.1 问题的由来在数字化时代,文本信息的获取和处理方式发生了翻天覆地的变化。虽然电子文档和网络上的文本信息越来越多,但仍有大量纸质文档和图片中的文本信息需要被提取和处理。光学字符识别(Optic原创 2024-08-24 01:58:30 · 472 阅读 · 0 评论Momentum优化器原理与代码实例讲解
Momentum优化器原理与代码实例讲解1. 背景介绍1.1 问题的由来在深度学习和机器学习领域,优化器是训练模型时不可或缺的一部分。优化器的主要任务是通过调整模型参数来最小化损失函数,从而提升模型的性能。对于神经网络模型而言,优原创 2024-08-24 01:57:58 · 455 阅读 · 0 评论OneShot Learning原理与代码实例讲解
原型分类器:例如K近邻(KNN)方法,通过计算新样本与训练样本的距离来分类。元学习:通过在多个任务上学习,使得模型能够更快地适应新任务。深度学习基元:利用深度神经网络进行学习,如MetaNet、MAML等。本文详细阐述了One-shot learning的概念、原理、算法、数学模型、代码实例以及实际应用。通过理论分析和具体案例,展示了如何构建和应用One-shot学习模型。原创 2024-08-24 01:59:01 · 985 阅读 · 0 评论






























分享