Movatterモバイル変換


[0]ホーム

URL:


NNDL 实验13 卷积神经网络(4)预训练ResNet-CIFAR10

最新推荐文章于 2023-12-05 23:42:37 发布
原创最新推荐文章于 2023-12-05 23:42:37 发布·1.2k 阅读
· 22
· 18·
CC 4.0 BY-SA版权
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。
本文介绍了如何使用PyTorch的预训练ResNet18模型对CIFAR-10数据集进行图像分类,探讨了迁移学习的概念,比较了使用预训练模型和不使用的情况,并展示了数据处理、模型构建、训练和评估的过程。
部署运行你感兴趣的模型镜像

实验任务:使用预训练resnet18实现CIFAR-10分类

数据集:https://links.jianshu.com/go?to=https%3A%2F%2Fwww.cs.toronto.edu%2F%7Ekriz%2Fcifar-10-python.tar.gz

数据集:CIFAR-10数据集

使用Pytorch高层API中的Resnet18进行图像分类实验。

torchvision.models.resnet18()

什么是“预训练模型”?什么是“迁移学习”?

比较“使用预训练模型”和“不使用预训练模型”的效果。

resnet = models.resnet18(pretrained=True)

resnet = models.resnet18(pretrained=False)

损失函数:交叉熵

优化器:Adam优化器,Adam优化器的介绍参考NNDL第7.2.4.3节

评价指标:准确率

1.1数据读取

在本实验中,将原始训练集拆分成了train_set、dev_set两个部分,分别包括40 000条和10 000条样本。将data_batch_1到data_batch_4作为训练集,data_batch_5作为验证集,test_batch作为测试集。 最终的数据集构成为:

  • 训练集:40 000条样本。
  • 验证集:10 000条样本。
  • 测试集:10 000条样本。

读取一个batch数据的代码如下所示:

import osimport pickleimport numpy as npdef load_cifar10_batch(folder_path, batch_id=1, mode='train'):    if mode == 'test':        file_path = os.path.join(folder_path, 'test_batch')    else:        file_path = os.path.join(folder_path, 'data_batch_'+str(batch_id))    #加载数据集文件    with open(file_path, 'rb') as batch_file:        batch = pickle.load(batch_file, encoding = 'latin1')    imgs = batch['data'].reshape((len(batch['data']),3,32,32)) / 255.    labels = batch['labels']    return np.array(imgs, dtype='float32'), np.array(labels)imgs_batch, labels_batch = load_cifar10_batch(folder_path=r'C:\Users\320\PycharmProjects\pythonProject/cifar-10-batches-py',                                                batch_id=1, mode='train')

 查看数据的维度:

#打印一下每个batch中X和y的维度print ("batch of imgs shape: ",imgs_batch.shape, "batch of labels shape: ", labels_batch.shape)

 可视化观察其中的一张样本图像和对应的标签,代码如下所示:

调用matplotlib库:

import matplotlib.pyplot as plt

主函数

image, label = imgs_batch[3], labels_batch[3]print("The label in the picture is {}".format(label))plt.figure(figsize=(2, 2))plt.imshow(image.transpose(1,2,0))plt.savefig('cnn-car.pdf')

1.3 构造Dataset类

import osimport pickleimport numpy as npdef load_cifar10_batch(folder_path, batch_id=1, mode='train'):    if mode == 'test':        file_path = os.path.join(folder_path, 'test_batch')    else:        file_path = os.path.join(folder_path, 'data_batch_'+str(batch_id))    #加载数据集文件    with open(file_path, 'rb') as batch_file:        batch = pickle.load(batch_file, encoding = 'latin1')    imgs = batch['data'].reshape((len(batch['data']),3,32,32)) / 255.    labels = batch['labels']    return np.array(imgs, dtype='float32'), np.array(labels)imgs_batch, labels_batch = load_cifar10_batch(folder_path=r'C:\Users\320\PycharmProjects\pythonProject/cifar-10-batches-py',                                                batch_id=1, mode='train')import torchfrom torch.utils.data import Dataset,DataLoaderimport torchvision.transforms as transformsclass CIFAR10Dataset(Dataset):    def __init__(self, folder_path=r'C:\Users\320\PycharmProjects\pythonProject\cifar-10-batches-py', mode='train'):        if mode == 'train':            #加载batch1-batch4作为训练集            self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, batch_id=1, mode='train')            for i in range(2, 5):                imgs_batch, labels_batch = load_cifar10_batch(folder_path=folder_path, batch_id=i, mode='train')                self.imgs, self.labels = np.concatenate([self.imgs, imgs_batch]), np.concatenate([self.labels, labels_batch])        elif mode == 'dev':            #加载batch5作为验证集            self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, batch_id=5, mode='dev')        elif mode == 'test':            #加载测试集            self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, mode='test')        self.transforms = transforms.Compose([transforms.Resize(32),transforms.ToTensor(), transforms.Normalize(mean=[0.4914,0.4822,0.4465], std=[0.2023, 0.1994, 0.2010])])    def __getitem__(self, idx):        img, label = self.imgs[idx], self.labels[idx]        img = self.transform(img)        return img, label    def __len__(self):        return len(self.imgs)train_dataset = CIFAR10Dataset(folder_path=r'C:\Users\320\PycharmProjects\pythonProject\cifar-10-batches-py', mode='train')dev_dataset = CIFAR10Dataset(folder_path=r'C:\Users\320\PycharmProjects\pythonProject\cifar-10-batches-py', mode='dev')test_dataset = CIFAR10Dataset(folder_path=r'C:\Users\320\PycharmProjects\pythonProject/cifar-10-batches-py', mode='test')

2.1模型构建

使用PyTorch API中的Resnet18进行图像分类实验

from torchvision.models import resnet18resnet18_model=resnet18(pretrained=True)

3.1 模型训练

复用RunnerV3类,实例化RunnerV3类,并传入训练配置。
使用训练集和验证集进行模型训练,共训练30个epoch。
在实验中,保存准确率最高的模型作为最佳模型。代码实现如下:、

其中RunnerV3和Accuracy代码可以直接调用飞桨中的nndl

RunnerV3代码:

class RunnerV3(object):    def __init__(self, model, optimizer, loss_fn, metric, **kwargs):        self.model = model        self.optimizer = optimizer        self.loss_fn = loss_fn        self.metric = metric  # 只用于计算评价指标        # 记录训练过程中的评价指标变化情况        self.dev_scores = []        # 记录训练过程中的损失函数变化情况        self.train_epoch_losses = []  # 一个epoch记录一次loss        self.train_step_losses = []  # 一个step记录一次loss        self.dev_losses = []        # 记录全局最优指标        self.best_score = 0    def train(self, train_loader, dev_loader=None, **kwargs):        # 将模型切换为训练模式        self.model.train()        # 传入训练轮数,如果没有传入值则默认为0        num_epochs = kwargs.get("num_epochs", 0)        # 传入log打印频率,如果没有传入值则默认为100        log_steps = kwargs.get("log_steps", 100)        # 评价频率        eval_steps = kwargs.get("eval_steps", 0)        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"        save_path = kwargs.get("save_path", "best_model.pdparams")        custom_print_log = kwargs.get("custom_print_log", None)        # 训练总的步数        num_training_steps = num_epochs * len(train_loader)        if eval_steps:            if self.metric is None:                raise RuntimeError('Error: Metric can not be None!')            if dev_loader is None:                raise RuntimeError('Error: dev_loader can not be None!')        # 运行的step数目        global_step = 0        # 进行num_epochs轮训练        for epoch in range(num_epochs):            # 用于统计训练集的损失            total_loss = 0            for step, data in enumerate(train_loader):                X, y = data                # 获取模型预测                logits = self.model(X.to(device))                loss = self.loss_fn(logits, y.long().to(device))  # 默认求mean                total_loss += loss                # 训练过程中,每个step的loss进行保存                self.train_step_losses.append((global_step, loss.item()))                if log_steps and global_step % log_steps == 0:                    print(                        f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}")                # 梯度反向传播,计算每个参数的梯度值                loss.backward()                if custom_print_log:                    custom_print_log(self)                # 小批量梯度下降进行参数更新                self.optimizer.step()                # 梯度归零                self.optimizer.zero_grad()                # 判断是否需要评价                if eval_steps > 0 and global_step > 0 and \                        (global_step % eval_steps == 0 or global_step == (num_training_steps - 1)):                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)                    print(f"[Evaluate]  dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}")                    # 将模型切换为训练模式                    self.model.train()                    # 如果当前指标为最优指标,保存该模型                    if dev_score > self.best_score:                        self.save_model(save_path)                        print(                            f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}")                        self.best_score = dev_score                global_step += 1            # 当前epoch 训练loss累计值            trn_loss = (total_loss / len(train_loader)).item()            # epoch粒度的训练loss保存            self.train_epoch_losses.append(trn_loss)        print("[Train] Training done!")    # 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度    @torch.no_grad()    def evaluate(self, dev_loader, **kwargs):        assert self.metric is not None        # 将模型设置为评估模式        self.model.eval()        global_step = kwargs.get("global_step", -1)        # 用于统计训练集的损失        total_loss = 0        # 重置评价        self.metric.reset()        # 遍历验证集每个批次        for batch_id, data in enumerate(dev_loader):            X, y = data            # 计算模型输出            logits = self.model(X.to(device))            # 计算损失函数            loss = self.loss_fn(logits, y.long().to(device)).item()            # 累积损失            total_loss += loss            # 累积评价            self.metric.update(logits, y.to(device))        dev_loss = (total_loss / len(dev_loader))        dev_score = self.metric.accumulate()        # 记录验证集loss        if global_step != -1:            self.dev_losses.append((global_step, dev_loss))            self.dev_scores.append(dev_score)        return dev_score, dev_loss    # 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度    @torch.no_grad()    def predict(self, x, **kwargs):        # 将模型设置为评估模式        self.model.eval()        # 运行模型前向计算,得到预测值        logits = self.model(x.to(device))        return logits    def save_model(self, save_path):        torch.save(self.model.state_dict(), save_path)    def load_model(self, model_path):        state_dict = torch.load(model_path)        self.model.load_state_dict(state_dict)

Accuracy:

class Accuracy():    def __init__(self, is_logist=True):        # 用于统计正确的样本个数        self.num_correct = 0        # 用于统计样本的总数        self.num_count = 0        self.is_logist = is_logist    def update(self, outputs, labels):        # 判断是二分类任务还是多分类任务,shape[1]=1时为二分类任务,shape[1]>1时为多分类任务        if outputs.shape[1] == 1:  # 二分类            outputs = torch.squeeze(outputs, dim=-1)            if self.is_logist:                # logist判断是否大于0                preds = torch.tensor((outputs >= 0), dtype=torch.float32)            else:                # 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0                preds = torch.tensor((outputs >= 0.5), dtype=torch.float32)        else:            # 多分类时,使用'torch.argmax'计算最大元素索引作为类别            preds = torch.argmax(outputs, dim=1)        # 获取本批数据中预测正确的样本个数        labels = torch.squeeze(labels, dim=-1)        batch_correct = torch.sum(torch.tensor(preds == labels, dtype=torch.float32)).cpu().numpy()        batch_count = len(labels)        # 更新num_correct 和 num_count        self.num_correct += batch_correct        self.num_count += batch_count    def accumulate(self):        # 使用累计的数据,计算总的指标        if self.num_count == 0:            return 0        return self.num_correct / self.num_count    def reset(self):        # 重置正确的数目和总数        self.num_correct = 0        self.num_count = 0    def name(self):        return "Accuracy"

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

确定要放弃本次机会?
福利倒计时
::

立减 ¥

普通VIP年卡可用
立即使用
1 条评论您还未登录,请先登录后发表或查看评论

博客等级

码龄4年
107
原创
952
点赞
932
收藏
164
粉丝
关注
私信

TA的精选

查看更多

大家在看

TA的创作历程

2025
历年创作

分类专栏

上一篇:
NNDL 作业8 卷积 导数 反向传播
下一篇:
NNDL 作业9 RNN - SRN
PyTorch 2.5
AI算力推荐

PyTorch 2.5

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

PyTorch
Cuda

目录

展开全部

收起

PyTorch 2.5
AI算力推荐

PyTorch 2.5

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

PyTorch
Cuda

目录

展开全部

收起

上一篇:
NNDL 作业8 卷积 导数 反向传播
下一篇:
NNDL 作业9 RNN - SRN

目录

评论 1
被折叠的  条评论为什么被折叠?到【灌水乐园】发言
查看更多评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

[8]ページ先頭

©2009-2025 Movatter.jp