
【自适应滤波】基于新息协方差匹配的自适应EKF (CM-AEKF) vs 经典EKF对比,附MATLAB代码 本文提出了一种基于新息协方差匹配的自适应扩展卡尔曼滤波(CM-AEKF)算法,并与经典EKF进行对比。在二维平面匀速运动场景下,系统状态为[x, vx, y, vy],观测数据通过雷达测距和测角获得。仿真结果表明,CM-AEKF通过滑动窗口计算实际新息协方差,动态调整过程噪声Q和观测噪声R,相比固定参数的经典EKF,能有效降低状态估计误差。轨迹图和误差曲线显示,CM-AEKF在x、y轴位移估计上具有更优性能。该算法特别适用于系统噪声统计特性未知或时变的场景。MATLAB源代码可直接运行复现结果。


告别手动操作!Python任务定时器实战:从threading到APScheduler 本文系统介绍了Python中实现定时任务的三种主要工具:内置的threading.Timer、第三方库schedule和专业的APScheduler。threading.Timer适合简单轻量的单次/循环任务,schedule提供优雅的周期性任务调度语法,而APScheduler则支持企业级复杂定时需求,包括多种触发器、持久化存储和动态任务管理。文章还总结了线程安全、异常处理等注意事项,并提供了根据场景选择工具的建议:简单任务用threading.Timer,周期性任务选schedule,复杂需求推荐APS

作者推荐


- 阿珊和她的猫
- 前端开发工程师、CSDN博客专家、23年度博客之星前端领域TOP1、蓝桥云课签约作者、阿里云专家博主、已过CET6、牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》《2024前端面试高频手撕题》,已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入门到实战全面掌握 uni-app》
关注