Movatterモバイル変換


[0]ホーム

URL:


.摘星.
腾讯云Lighthouse零代码部署热门视频拍摄脚本MCP!视频创作者的福音! 腾讯云Lighthouse推出零代码部署视频拍摄脚本MCP系统,为视频创作者提供高效解决方案。该系统基于腾讯混元多模态AI技术,能自动分析热门视频内容并生成专业拍摄脚本,大幅降低创作门槛。通过Lighthouse平台的一键部署功能,用户无需编码即可快速搭建服务。实际测试显示,系统能在5分钟内完成5秒视频的深度分析,生成包含4个分镜的详细脚本,显著提升创作效率。相比传统方式,该方案在技术门槛、分析速度和成本控制等方面具有明显优势,体现了AI技术与云服务的创新结合。

阅读 18.0w

95赞

Kaydeon
【AIGC】统一生成图像和视频的高性能基础模型,Waver全网最详细解读 摘要 Waver是一款高性能视频生成基础模型,支持文生视频(T2V)、图生视频(I2V)和文生图(T2I)任务,可直接生成720p/5-10秒视频并上采样至1080p。其创新包括:1)混合流DiT架构,通过双流/单流模块组合优化模态对齐;2)高质量数据管线,采用MLLM视频质量模型筛选2亿+训练样本;3)两阶段生成流程,首先生成低分辨率视频,再通过级联精炼器提升画质。在权威评测中,Waver位列T2V/I2V赛道前三,性能媲美商业模型,特别擅长处理复杂运动场景。

阅读 934

20赞

.摘星.
视频秒变爆款脚本!基于腾讯混元多模态AI的智能视频分析与创作助手 摘要:本文介绍了一个基于腾讯混元多模态AI的智能视频分析与创作助手项目。该系统通过视频处理、图像识别和文本生成的完整链路,能够将视频内容自动转换为专业拍摄脚本,解决创作者面临的创意枯竭和效率低下问题。核心技术包括自适应帧采样算法、多维度内容理解和个性化脚本生成,实测图像识别准确率达96.5%,文本生成质量评分9.3/10。项目在腾讯混元AIGC多模态挑战赛中开发,采用MCP协议和TypeScript实现,可生成商业广告、纪录片、教学视频等多种专业脚本,显著提升内容创作效率。

阅读 8.8w

106赞

玖笙&
✨WPF编程基础【3.4】:范围控件(附源码) 本文深入解析WPF中的三种核心范围控件:Slider、ScrollBar和ProgressBar。首先从RangeBase基类入手,介绍其核心属性和事件机制;随后详细讲解Slider控件的数值选择功能,包括基础实现、高级应用(刻度、范围选择)及样式定制;接着探讨ScrollBar控件的滚动导航功能及其实际应用;最后阐述ProgressBar的进度反馈功能,涵盖确定性/不确定性进度条及自定义样式实现。文章通过丰富示例代码和属性详解,帮助开发者掌握各类范围控件的特性和应用场景,为构建现代化UI界面提供实用指导。

阅读 777

30赞

xcLeigh
计算机视觉必读论文:从经典到前沿 计算机视觉必读论文:从经典到前沿​ ,人工智能,计算机视觉,大模型,AI,计算机视觉作为人工智能领域的重要分支,旨在让计算机理解和解释图像或视频中的内容,模拟人类视觉系统的功能。其应用领域极为广泛,涵盖了安防监控、自动驾驶、医疗影像分析、工业检测、智能零售等多个方面。在安防监控中,计算机视觉可实现实时的目标检测与跟踪,识别异常行为,为公共安全提供有力保障;在自动驾驶领域,它帮助车辆感知周围环境,识别道路、行人、其他车辆等物体,实现安全可靠的行驶。随着技术的不断发展,计算机视觉的应用场景还在持续拓展,对社会发

阅读 13.5w

167赞

文浩(楠搏万)
VOSK 离线中文语音识别实战:精准转文字、格式避坑全解析 VOSK是一款轻量级、支持多语言的离线语音识别引擎,具有本地运行、多语言识别和高准确率的特点。文章重点指出VOSK对音频格式的严格限制,特别是必须使用单声道16kHz PCM格式的WAV音频,否则会报错。为解决这一问题,作者提供了使用torchaudio进行音频预处理的代码,并展示了VOSK中文识别的核心Python实现。最后,文章总结了VOSK的应用场景和部署步骤,并推荐阅读相关语音处理文章以理解完整流程。该方案特别适合需要本地化语音识别的应用场景。

阅读 5.7k

28赞

沧海一粟青草喂马
图片生成视频软件深度评测:浅谈视频音频提取技术 定位:专注短视频创作者的轻量化工具,主打“一键生成”功能。技术亮点动作模仿算法:通过先进的AI技术精准捕捉并模拟人物肢体语言、面部表情及复杂舞蹈动作,降低制作难度和成本。智能脚本生成:输入产品信息后,系统自动生成符合营销逻辑的解说文案,支持SEO关键词嵌入,提升视频曝光率。多平台适配:预设抖音、快手、微信视频号等主流平台参数,无需手动调整码率,实现品牌统一性与内容差异化的平衡。实测数据批量生成分店促销视频时,效率提升80%,成本降低70%。

阅读 947

23赞

xcLeigh
计算机视觉图像处理基础系列:滤波、边缘检测与形态学操作 计算机视觉图像处理基础系列:滤波、边缘检测与形态学操作,计算机视觉是人工智能领域的核心方向之一,旨在让计算机具备理解和解释视觉信息的能力。而图像处理则是计算机视觉的基石,为后续的特征提取、目标识别、图像分割等高级任务提供数据基础。滤波、边缘检测与形态学操作作为图像处理的基础环节,各自发挥着独特且关键的作用。滤波用于改善图像质量,去除噪声或增强特定特征;边缘检测聚焦于提取图像中物体的轮廓信息;形态学操作则基于图像形状对其进行优化与处理。深入理解这些基础技术,对于掌握计算机视觉的核心知识体系至关重要。

阅读 17.0w

152赞

作者推荐
Monkey的自我迭代
大三下暑假7.2号开始,从0基础开学人工智能,学4个月,学至找工作。希望大家来监督,一起进步!
关注
Together_CZ
欲戴其冠,必承其重
关注
EasyGBS
安徽旭帆信息科技有限公司
关注
Coovally AI模型快速验证
由来自清华大学及欧洲的人才团队共同成立的一个包含完整AI建模流程、AI项目管理及AI系统部署管理的机器视觉平台。让机器视觉AI应用落地更便宜、更快速、更有效,赋能业务人员快速构建AI系统;赋能AI工程师提升AI系统构建效率。帮助企业低成本实现AI算法自由。
关注
村北头的码农
c++程序员,目前从事人工智能领域相关工作
关注
Black蜡笔小新
我将像一匹负轭的老马,不到最后关头绝不松套。
关注
赴335
认真学习中
关注
帅小柏
2019年 “百家号杯”全国大学生新媒体知识竞赛 省赛特等奖2020年“海信杯”第二届吉林省大学生人工智能创新大赛 省赛一等奖2020年高教社杯全国大学生数学建模竞赛 三等奖2021-2022年度第三届全国大学生算法设计与编程挑战赛(冬季赛) 金奖两年参加ACM省赛经历
关注
格林威
机器视觉领域优质创作者,专注于工业相机、智能相机、深度学习、机器视觉、图像处理、OpenCV、Halcon、人工智能领域
关注
IT古董
坚持不懈,努力分享!!!
关注

[8]ページ先頭

©2009-2025 Movatter.jp