Movatterモバイル変換


[0]ホーム

URL:


謝堆堆DDD
码龄6年
IP 属地:湖南省
加入CSDN时间:2019-12-27
博客简介:

Eve_Shieh的博客

查看详细资料
个人成就
  • 获得120次点赞
  • 内容获得8次评论
  • 获得222次收藏
  • 代码片获得691次分享
  • 博客总排名44,937
  • 原力等级
    3
    原力分
    279
    本月获得
    11
TA的专栏

TA关注的专栏0

TA关注的收藏夹0

TA关注的社区4

TA参与的活动0

创作活动更多

新星杯·14天创作挑战营·第18期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛!注:1、参赛者可以进入活动群进行交流、互相鼓励与支持(开卷),虚竹哥会分享创作心得和涨粉心得,答疑及活动群请见:【下面活动群二维码】2、文章质量分查询:https://www.csdn.net/qc我们诚挚邀请你们参加为期14天的创作挑战赛!

119人参与去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索取消

神经网络基础03-深入浅出LSTM及其Python代码实现

传统神经网络结构的缺陷从传统的神经网络结构我们可以看出,信号流从输入层到输出层依次流过,同一层级的神经元之间,信号是不会相互传递的。这样就会导致一个问题,输出信号只与输入信号有关,而与输入信号的先后顺序无关。并且神经元本身也不具有存储信息的能力,整个网络也就没有“记忆”能力,当输入信号是一个跟时间相关的信号时,如果我们想要通过这段信号的“上下文”信息来理解一段时间序列的意思,传统的神经网络结构就显得无力了。与我们人类的理解过程类似,我们听到一句话时往往需要通过这句话中词语出现的顺序以及我们之前所学的关于这
原创
博文更新于 2021.04.16 ·
4054 阅读 ·
20 点赞 ·
2 评论 ·
63 收藏

[8]ページ先頭

©2009-2025 Movatter.jp