| Back toMultiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-12-15 12:07 -0500 (Mon, 15 Dec 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble" | 4882 |
| merida1 | macOS 12.7.6 Monterey | x86_64 | 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble" | 4673 |
| kjohnson1 | macOS 13.7.5 Ventura | arm64 | 4.5.2 Patched (2025-11-04 r88984) -- "[Not] Part in a Rumble" | 4607 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4671 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package654/2361 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| edgeR 4.8.1 (landing page) Yunshun Chen
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.6 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.7.5 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
| To the developers/maintainers of the edgeR package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/edgeR.git to reflect on this report. SeeTroubleshooting Build Report for more information. - Use the followingRenviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. SeeRenviron.bioc for more information. |
| Package: edgeR |
| Version: 4.8.1 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:edgeR.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings edgeR_4.8.1.tar.gz |
| StartedAt: 2025-12-13 01:56:19 -0500 (Sat, 13 Dec 2025) |
| EndedAt: 2025-12-13 01:58:37 -0500 (Sat, 13 Dec 2025) |
| EllapsedTime: 138.2 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: edgeR.Rcheck |
| Warnings: 0 |
################################################################################################################################################################## Running command:###### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:edgeR.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings edgeR_4.8.1.tar.gz###############################################################################################################################################################* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/edgeR.Rcheck’* using R version 4.5.2 Patched (2025-11-04 r88984)* using platform: aarch64-apple-darwin20* R was compiled by Apple clang version 16.0.0 (clang-1600.0.26.6) GNU Fortran (GCC) 14.2.0* running under: macOS Ventura 13.7.8* using session charset: UTF-8* using option ‘--no-vignettes’* checking for file ‘edgeR/DESCRIPTION’ ... OK* this is package ‘edgeR’ version ‘4.8.1’* checking package namespace information ... OK* checking package dependencies ... OK* checking if this is a source package ... OK* checking if there is a namespace ... OK* checking for hidden files and directories ... OK* checking for portable file names ... OK* checking for sufficient/correct file permissions ... OK* checking whether package ‘edgeR’ can be installed ... OK* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.0.40.1)’* used SDK: ‘MacOSX11.3.1.sdk’* checking installed package size ... OK* checking package directory ... OK* checking ‘build’ directory ... OK* checking DESCRIPTION meta-information ... OK* checking top-level files ... OK* checking for left-over files ... OK* checking index information ... OK* checking package subdirectories ... OK* checking code files for non-ASCII characters ... OK* checking R files for syntax errors ... OK* checking whether the package can be loaded ... OK* checking whether the package can be loaded with stated dependencies ... OK* checking whether the package can be unloaded cleanly ... OK* checking whether the namespace can be loaded with stated dependencies ... OK* checking whether the namespace can be unloaded cleanly ... OK* checking whether startup messages can be suppressed ... OK* checking dependencies in R code ... OK* checking S3 generic/method consistency ... OK* checking replacement functions ... OK* checking foreign function calls ... OK* checking R code for possible problems ... OK* checking Rd files ... OK* checking Rd metadata ... OK* checking Rd cross-references ... NOTENon-topic package-anchored link(s) in Rd file 'asmatrix.Rd': ‘[limma:asmatrix]{as.matrix}’See section 'Cross-references' in the 'Writing R Extensions' manual.Found the following Rd file(s) with Rd \link{} targets missing packageanchors: camera.Rd: ids2indices, camera decidetestsDGE.Rd: TestResults-class, decideTests diffSplice.Rd: diffSplice, topSplice, plotSplice dim.Rd: 02.Classes glmQLFit.Rd: squeezeVar glmTreat.Rd: treat goana.Rd: goana.default, kegga.default, goana, topGO, kegga, topKEGG head.Rd: head.EList normalizeBetweenArraysDGEList.Rd: normalizeCyclicLoess, normalizeBetweenArrays plotMD.Rd: decideTests, plotWithHighlights roast.DGEGLM.Rd: roast, mroast roast.DGEList.Rd: roast, mroast romer.DGEGLM.Rd: ids2indices, romer.default, romer romer.DGEList.Rd: ids2indices, romer.default, romer sampleWeights.Rd: arrayWeights topTags.Rd: topTable voomLmFit.Rd: eBayes, voom, lmFit, voomWithQualityWeights, duplicateCorrelation, arrayWeights, MArrayLM-class, chooseLowessSpanPlease provide package anchors for all Rd \link{} targets not in thepackage itself and the base packages.* checking for missing documentation entries ... OK* checking for code/documentation mismatches ... OK* checking Rd \usage sections ... OK* checking Rd contents ... OK* checking for unstated dependencies in examples ... OK* checking line endings in C/C++/Fortran sources/headers ... OK* checking line endings in Makefiles ... OK* checking compilation flags in Makevars ... OK* checking for GNU extensions in Makefiles ... OK* checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK* checking use of PKG_*FLAGS in Makefiles ... OK* checking compiled code ... NOTENote: information on .o files is not available* checking sizes of PDF files under ‘inst/doc’ ... OK* checking files in ‘vignettes’ ... OK* checking examples ... OKExamples with CPU (user + system) or elapsed time > 5s user system elapsednearestTSS 6.243 0.223 9.138romer.DGEGLM 3.825 0.212 5.505* checking for unstated dependencies in ‘tests’ ... OK* checking tests ... Running ‘edgeR-Tests.R’ Comparing ‘edgeR-Tests.Rout’ to ‘edgeR-Tests.Rout.save’ ... OK OK* checking for unstated dependencies in vignettes ... OK* checking package vignettes ... OK* checking running R code from vignettes ... SKIPPED* checking re-building of vignette outputs ... SKIPPED* checking PDF version of manual ... OK* DONEStatus: 2 NOTEsSee ‘/Users/biocbuild/bbs-3.22-bioc/meat/edgeR.Rcheck/00check.log’for details.edgeR.Rcheck/00install.out
################################################################################################################################################################## Running command:###### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL edgeR###############################################################################################################################################################* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’* installing *source* package ‘edgeR’ ...** this is package ‘edgeR’ version ‘4.8.1’** using staged installation** libsusing C compiler: ‘Apple clang version 15.0.0 (clang-1500.0.40.1)’using SDK: ‘MacOSX11.3.1.sdk’clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c R_exports.c -o R_exports.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c R_process_hairpin_reads.c -o R_process_hairpin_reads.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c add_prior_count.c -o add_prior_count.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c clowess.c -o clowess.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c compute_apl.c -o compute_apl.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c compute_cpm.c -o compute_cpm.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c compute_nbdev.c -o compute_nbdev.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c exact_test_by_dev.c -o exact_test_by_dev.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c fmm_spline.c -o fmm_spline.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c glm.c -o glm.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c good_turing.c -o good_turing.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c init.c -o init.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c interpolator.c -o interpolator.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c loess_by_col.c -o loess_by_col.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c object.c -o object.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c ql_glm.c -o ql_glm.oclang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c ql_weights.c -o ql_weights.oclang -arch arm64 -std=gnu2x -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o edgeR.so R_exports.o R_process_hairpin_reads.o add_prior_count.o clowess.o compute_apl.o compute_cpm.o compute_nbdev.o exact_test_by_dev.o fmm_spline.o glm.o good_turing.o init.o interpolator.o loess_by_col.o object.o ql_glm.o ql_weights.o -L/Library/Frameworks/R.framework/Resources/lib -lRlapack -L/Library/Frameworks/R.framework/Resources/lib -lRblas -L/opt/gfortran/lib/gcc/aarch64-apple-darwin20.0/14.2.0 -L/opt/gfortran/lib -lemutls_w -lheapt_w -lgfortran -lquadmath -F/Library/Frameworks/R.framework/.. -framework Rinstalling to /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/00LOCK-edgeR/00new/edgeR/libs** R** inst** byte-compile and prepare package for lazy loading** help*** installing help indices** building package indices** installing vignettes** testing if installed package can be loaded from temporary location** checking absolute paths in shared objects and dynamic libraries** testing if installed package can be loaded from final location** testing if installed package keeps a record of temporary installation path* DONE (edgeR)
edgeR.Rcheck/tests/edgeR-Tests.Rout
R version 4.5.2 Patched (2025-11-04 r88984) -- "[Not] Part in a Rumble"Copyright (C) 2025 The R Foundation for Statistical ComputingPlatform: aarch64-apple-darwin20R is free software and comes with ABSOLUTELY NO WARRANTY.You are welcome to redistribute it under certain conditions.Type 'license()' or 'licence()' for distribution details.R is a collaborative project with many contributors.Type 'contributors()' for more information and'citation()' on how to cite R or R packages in publications.Type 'demo()' for some demos, 'help()' for on-line help, or'help.start()' for an HTML browser interface to help.Type 'q()' to quit R.> library(edgeR)Loading required package: limma> options(warnPartialMatchArgs=TRUE,warnPartialMatchAttr=TRUE,warnPartialMatchDollar=TRUE)> > set.seed(0); u <- runif(100)> > # generate raw counts from NB, create list object> y <- matrix(rnbinom(80,size=5,mu=10),nrow=20)> y <- rbind(0,c(0,0,2,2),y)> rownames(y) <- paste("Tag",1:nrow(y),sep=".")> d <- DGEList(counts=y,group=rep(1:2,each=2),lib.size=1001:1004)> > filterByExpr(d) Tag.1 Tag.2 Tag.3 Tag.4 Tag.5 Tag.6 Tag.7 Tag.8 Tag.9 Tag.10 Tag.11 FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE Tag.12 Tag.13 Tag.14 Tag.15 Tag.16 Tag.17 Tag.18 Tag.19 Tag.20 Tag.21 Tag.22 TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE > > # estimate common dispersion and find differences in expression> d <- estimateCommonDisp(d)> d$common.dispersion[1] 0.210292> de <- exactTest(d)> summary(de$table) logFC logCPM PValue Min. :-1.7266 Min. :10.96 Min. :0.01976 1st Qu.:-0.4855 1st Qu.:13.21 1st Qu.:0.33120 Median : 0.2253 Median :13.37 Median :0.56514 Mean : 0.1877 Mean :13.26 Mean :0.54504 3rd Qu.: 0.5258 3rd Qu.:13.70 3rd Qu.:0.81052 Max. : 4.0861 Max. :14.31 Max. :1.00000 > topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450964 13.73726 0.01975954 0.4347099Tag.21 -1.7265870 13.38327 0.06131012 0.6744114Tag.6 -1.6329986 12.81479 0.12446044 0.8982100Tag.2 4.0861092 11.54121 0.16331090 0.8982100Tag.16 0.9324996 13.57074 0.29050785 0.9655885Tag.20 0.8543138 13.76364 0.31736609 0.9655885Tag.12 0.7081170 14.31389 0.37271028 0.9655885Tag.19 -0.7976602 13.31405 0.40166354 0.9655885Tag.3 -0.7300410 13.54155 0.42139935 0.9655885Tag.8 -0.7917906 12.86353 0.47117217 0.9655885> > d2 <- estimateTagwiseDisp(d,trend="none",prior.df=20)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1757 0.1896 0.1989 0.2063 0.2185 0.2677 > de <- exactTest(d2,dispersion="common")> topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450964 13.73726 0.01975954 0.4347099Tag.21 -1.7265870 13.38327 0.06131012 0.6744114Tag.6 -1.6329986 12.81479 0.12446044 0.8982100Tag.2 4.0861092 11.54121 0.16331090 0.8982100Tag.16 0.9324996 13.57074 0.29050785 0.9655885Tag.20 0.8543138 13.76364 0.31736609 0.9655885Tag.12 0.7081170 14.31389 0.37271028 0.9655885Tag.19 -0.7976602 13.31405 0.40166354 0.9655885Tag.3 -0.7300410 13.54155 0.42139935 0.9655885Tag.8 -0.7917906 12.86353 0.47117217 0.9655885> > de <- exactTest(d2)> topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450987 13.73726 0.01327001 0.2919403Tag.21 -1.7265897 13.38327 0.05683886 0.6252275Tag.6 -1.6329910 12.81479 0.11460208 0.8404152Tag.2 4.0861092 11.54121 0.16126207 0.8869414Tag.16 0.9324975 13.57074 0.28103256 0.9669238Tag.20 0.8543178 13.76364 0.30234789 0.9669238Tag.12 0.7081149 14.31389 0.37917895 0.9669238Tag.19 -0.7976633 13.31405 0.40762735 0.9669238Tag.3 -0.7300478 13.54155 0.40856822 0.9669238Tag.8 -0.7918243 12.86353 0.49005179 0.9669238> > d2 <- estimateTagwiseDisp(d,trend="movingave",span=0.4,prior.df=20)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1005 0.1629 0.2064 0.2077 0.2585 0.3164 > de <- exactTest(d2)> topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450951 13.73726 0.02427872 0.5341319Tag.21 -1.7265927 13.38327 0.05234833 0.5758316Tag.6 -1.6330014 12.81479 0.12846308 0.8954397Tag.2 4.0861092 11.54121 0.16280722 0.8954397Tag.16 0.9324887 13.57074 0.24308201 0.9711975Tag.20 0.8543044 13.76364 0.35534649 0.9711975Tag.19 -0.7976535 13.31405 0.38873717 0.9711975Tag.3 -0.7300525 13.54155 0.40001438 0.9711975Tag.12 0.7080985 14.31389 0.43530227 0.9711975Tag.8 -0.7918376 12.86353 0.49782701 0.9711975> > summary(exactTest(d2,rejection.region="smallp")$table$PValue) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02428 0.36369 0.55662 0.54319 0.78889 1.00000 > summary(exactTest(d2,rejection.region="deviance")$table$PValue) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02428 0.36369 0.55662 0.54319 0.78889 1.00000 > > d2 <- estimateTagwiseDisp(d,trend="loess",span=0.8,prior.df=20)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1165 0.1449 0.1832 0.1848 0.2116 0.2825 > de <- exactTest(d2)> topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450979 13.73726 0.01546795 0.3402949Tag.21 -1.7266049 13.38327 0.03545446 0.3899990Tag.6 -1.6329841 12.81479 0.10632987 0.7797524Tag.2 4.0861092 11.54121 0.16057893 0.8831841Tag.16 0.9324935 13.57074 0.26348818 0.9658389Tag.20 0.8543140 13.76364 0.31674090 0.9658389Tag.19 -0.7976354 13.31405 0.35564858 0.9658389Tag.3 -0.7300593 13.54155 0.38833737 0.9658389Tag.12 0.7081041 14.31389 0.41513004 0.9658389Tag.8 -0.7918152 12.86353 0.48483449 0.9658389> > d2 <- estimateTagwiseDisp(d,trend="tricube",span=0.8,prior.df=20)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1165 0.1449 0.1832 0.1848 0.2116 0.2825 > de <- exactTest(d2)> topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450979 13.73726 0.01546795 0.3402949Tag.21 -1.7266049 13.38327 0.03545446 0.3899990Tag.6 -1.6329841 12.81479 0.10632987 0.7797524Tag.2 4.0861092 11.54121 0.16057893 0.8831841Tag.16 0.9324935 13.57074 0.26348818 0.9658389Tag.20 0.8543140 13.76364 0.31674090 0.9658389Tag.19 -0.7976354 13.31405 0.35564858 0.9658389Tag.3 -0.7300593 13.54155 0.38833737 0.9658389Tag.12 0.7081041 14.31389 0.41513004 0.9658389Tag.8 -0.7918152 12.86353 0.48483449 0.9658389> > # mglmOneWay> design <- model.matrix(~group,data=d$samples)> mglmOneWay(d[1:10,],design,dispersion=0.2)$coefficients (Intercept) group2Tag.1 -1.000000e+08 0.000000e+00Tag.2 -1.000000e+08 1.000000e+08Tag.3 2.525729e+00 -5.108256e-01Tag.4 2.525729e+00 1.484200e-01Tag.5 2.140066e+00 -1.941560e-01Tag.6 2.079442e+00 -1.163151e+00Tag.7 2.014903e+00 2.363888e-01Tag.8 1.945910e+00 -5.596158e-01Tag.9 1.504077e+00 2.006707e-01Tag.10 2.302585e+00 2.623643e-01$fitted.values Sample1 Sample2 Sample3 Sample4Tag.1 0.0 0.0 0.0 0.0Tag.2 0.0 0.0 2.0 2.0Tag.3 12.5 12.5 7.5 7.5Tag.4 12.5 12.5 14.5 14.5Tag.5 8.5 8.5 7.0 7.0Tag.6 8.0 8.0 2.5 2.5Tag.7 7.5 7.5 9.5 9.5Tag.8 7.0 7.0 4.0 4.0Tag.9 4.5 4.5 5.5 5.5Tag.10 10.0 10.0 13.0 13.0> mglmOneWay(d[1:10,],design,dispersion=0)$coefficients (Intercept) group2Tag.1 -1.000000e+08 0.000000e+00Tag.2 -1.000000e+08 1.000000e+08Tag.3 2.525729e+00 -5.108256e-01Tag.4 2.525729e+00 1.484200e-01Tag.5 2.140066e+00 -1.941560e-01Tag.6 2.079442e+00 -1.163151e+00Tag.7 2.014903e+00 2.363888e-01Tag.8 1.945910e+00 -5.596158e-01Tag.9 1.504077e+00 2.006707e-01Tag.10 2.302585e+00 2.623643e-01$fitted.values Sample1 Sample2 Sample3 Sample4Tag.1 0.0 0.0 0.0 0.0Tag.2 0.0 0.0 2.0 2.0Tag.3 12.5 12.5 7.5 7.5Tag.4 12.5 12.5 14.5 14.5Tag.5 8.5 8.5 7.0 7.0Tag.6 8.0 8.0 2.5 2.5Tag.7 7.5 7.5 9.5 9.5Tag.8 7.0 7.0 4.0 4.0Tag.9 4.5 4.5 5.5 5.5Tag.10 10.0 10.0 13.0 13.0> > fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5/4)> lrt <- glmLRT(fit,coef=2)> topTags(lrt)Coefficient: group2 logFC logCPM LR PValue FDRTag.17 2.0450964 13.73726 6.0485417 0.01391779 0.3058698Tag.2 4.0861092 11.54121 4.8400340 0.02780635 0.3058698Tag.21 -1.7265870 13.38327 4.0777825 0.04345065 0.3186381Tag.6 -1.6329986 12.81479 3.0078205 0.08286364 0.4557500Tag.16 0.9324996 13.57074 1.3477682 0.24566867 0.8276702Tag.20 0.8543138 13.76364 1.1890032 0.27553071 0.8276702Tag.19 -0.7976602 13.31405 0.9279151 0.33540526 0.8276702Tag.12 0.7081170 14.31389 0.9095513 0.34023349 0.8276702Tag.3 -0.7300410 13.54155 0.8300307 0.36226364 0.8276702Tag.8 -0.7917906 12.86353 0.7830377 0.37621371 0.8276702> > fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5)> summary(fit$coefficients) (Intercept) group2 Min. :-7.604 Min. :-1.13681 1st Qu.:-4.895 1st Qu.:-0.32341 Median :-4.713 Median : 0.15083 Mean :-4.940 Mean : 0.07817 3rd Qu.:-4.524 3rd Qu.: 0.35163 Max. :-4.107 Max. : 1.60864 > > fit <- glmFit(d,design,prior.count=0.5/4)> lrt <- glmLRT(fit,coef=2)> topTags(lrt)Coefficient: group2 logFC logCPM LR PValue FDRTag.17 2.0450964 13.73726 6.0485417 0.01391779 0.3058698Tag.2 4.0861092 11.54121 4.8400340 0.02780635 0.3058698Tag.21 -1.7265870 13.38327 4.0777825 0.04345065 0.3186381Tag.6 -1.6329986 12.81479 3.0078205 0.08286364 0.4557500Tag.16 0.9324996 13.57074 1.3477682 0.24566867 0.8276702Tag.20 0.8543138 13.76364 1.1890032 0.27553071 0.8276702Tag.19 -0.7976602 13.31405 0.9279151 0.33540526 0.8276702Tag.12 0.7081170 14.31389 0.9095513 0.34023349 0.8276702Tag.3 -0.7300410 13.54155 0.8300307 0.36226364 0.8276702Tag.8 -0.7917906 12.86353 0.7830377 0.37621371 0.8276702> > dglm <- estimateGLMCommonDisp(d,design)> dglm$common.dispersion[1] 0.2033282> dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20)> summary(dglm$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1756 0.1879 0.1998 0.2031 0.2135 0.2578 > fit <- glmFit(dglm,design,prior.count=0.5/4)> lrt <- glmLRT(fit,coef=2)> topTags(lrt)Coefficient: group2 logFC logCPM LR PValue FDRTag.17 2.0450988 13.73727 6.8001118 0.009115216 0.2005348Tag.2 4.0861092 11.54122 4.8594088 0.027495756 0.2872068Tag.21 -1.7265904 13.38327 4.2537154 0.039164558 0.2872068Tag.6 -1.6329904 12.81479 3.1763761 0.074710253 0.4109064Tag.16 0.9324970 13.57074 1.4126709 0.234613512 0.8499599Tag.20 0.8543183 13.76364 1.2721097 0.259371274 0.8499599Tag.19 -0.7976614 13.31405 0.9190392 0.337727381 0.8499599Tag.12 0.7081163 14.31389 0.9014515 0.342392806 0.8499599Tag.3 -0.7300488 13.54155 0.8817937 0.347710872 0.8499599Tag.8 -0.7918166 12.86353 0.7356185 0.391068049 0.8603497> dglm <- estimateGLMTrendedDisp(dglm,design)> summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1522 0.1676 0.1740 0.1887 0.2000 0.3469 > dglm <- estimateGLMTrendedDisp(dglm,design,method="power")> summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1522 0.1676 0.1740 0.1887 0.2000 0.3469 > dglm <- estimateGLMTrendedDisp(dglm,design,method="spline")> summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.09353 0.11082 0.15463 0.19006 0.23050 0.52006 > dglm <- estimateGLMTrendedDisp(dglm,design,method="bin.spline")> summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1997 0.1997 0.1997 0.1997 0.1997 0.1997 > dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20)> summary(dglm$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1385 0.1792 0.1964 0.1935 0.2026 0.2709 > > dglm2 <- estimateDisp(dglm, design)> summary(dglm2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1652 0.1740 0.1821 0.1852 0.1909 0.2259 > dglm2 <- estimateDisp(dglm, design, prior.df=20)> summary(dglm2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1527 0.1669 0.1814 0.1858 0.1951 0.2497 > dglm2 <- estimateDisp(dglm, design, robust=TRUE)> summary(dglm2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1652 0.1735 0.1822 0.1854 0.1905 0.2280 > > # Continuous trend> nlibs <- 3> ntags <- 1000> dispersion.true <- 0.1> # Make first transcript respond to covariate x> x <- 0:2> design <- model.matrix(~x)> beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1)))> mu.true <- 2^(beta.true %*% t(design))> # Generate count data> y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true)> y <- matrix(y,ntags,nlibs)> colnames(y) <- c("x0","x1","x2")> rownames(y) <- paste("Gene",1:ntags,sep="")> d <- DGEList(y)> d <- normLibSizes(d,method="TMM")> fit <- glmFit(d, design, dispersion=dispersion.true, prior.count=0.5/3)> results <- glmLRT(fit, coef=2)> topTags(results)Coefficient: x logFC logCPM LR PValue FDRGene1 2.907024 13.56183 38.738512 4.845536e-10 4.845536e-07Gene61 2.855317 10.27136 10.738307 1.049403e-03 5.247015e-01Gene62 -2.123902 10.53174 8.818703 2.981585e-03 8.334760e-01Gene134 -1.949073 10.53355 8.125889 4.363759e-03 8.334760e-01Gene740 -1.610046 10.94907 8.013408 4.643227e-03 8.334760e-01Gene354 2.022698 10.45066 7.826308 5.149118e-03 8.334760e-01Gene5 1.856816 10.45249 7.214238 7.232750e-03 8.334760e-01Gene746 -1.798331 10.53094 6.846262 8.882693e-03 8.334760e-01Gene110 1.623148 10.68607 6.737984 9.438120e-03 8.334760e-01Gene383 1.637140 10.75412 6.687530 9.708965e-03 8.334760e-01> d1 <- estimateGLMCommonDisp(d, design, verbose=TRUE)Disp = 0.10253 , BCV = 0.3202 > glmFit(d,design,dispersion=dispersion.true, prior.count=0.5/3)An object of class "DGEGLM"$coefficients (Intercept) xGene1 -7.391745 2.0149958Gene2 -7.318483 -0.7611895Gene3 -6.831702 -0.1399478Gene4 -7.480255 0.5172002Gene5 -8.747793 1.2870467995 more rows ...$fitted.values x0 x1 x2Gene1 2.3570471 18.954454 138.2791328Gene2 2.5138172 1.089292 0.4282107Gene3 4.1580452 3.750528 3.0690081Gene4 2.1012460 3.769592 6.1349937Gene5 0.5080377 2.136398 8.1502486995 more rows ...$deviance[1] 6.38037545 1.46644913 1.38532340 0.01593969 1.03894513995 more elements ...$iter[1] 8 4 4 4 6995 more elements ...$failed[1] FALSE FALSE FALSE FALSE FALSE995 more elements ...$method[1] "levenberg"$counts x0 x1 x2Gene1 0 30 110Gene2 2 2 0Gene3 3 6 2Gene4 2 4 6Gene5 1 1 9995 more rows ...$unshrunk.coefficients (Intercept) xGene1 -7.437763 2.0412762Gene2 -7.373370 -0.8796273Gene3 -6.870127 -0.1465014Gene4 -7.552642 0.5410832Gene5 -8.972372 1.3929679995 more rows ...$df.residual[1] 1 1 1 1 1995 more elements ...$design (Intercept) x1 1 02 1 13 1 2attr(,"assign")[1] 0 1$offset [,1] [,2] [,3][1,] 8.295172 8.338525 8.284484attr(,"class")[1] "CompressedMatrix"attr(,"Dims")[1] 5 3attr(,"repeat.row")[1] TRUEattr(,"repeat.col")[1] FALSE995 more rows ...$dispersion[1] 0.1$prior.count[1] 0.1666667$samples group lib.size norm.factorsx0 1 4001 1.0008730x1 1 4176 1.0014172x2 1 3971 0.9977138$AveLogCPM[1] 13.561832 9.682757 10.447014 10.532113 10.452489995 more elements ...> > normLibSizes(d$counts,method="TMMwsp") x0 x1 x2 0.9992437 1.0077007 0.9931093 > > d2 <- estimateDisp(d, design)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.06382 0.09689 0.11782 0.11373 0.12745 0.13507 > d2 <- estimateDisp(d, design, prior.df=20)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.04862 0.09629 0.11283 0.11358 0.12412 0.37107 > d2 <- estimateDisp(d, design, robust=TRUE)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.06382 0.09689 0.11782 0.11373 0.12745 0.13507 > > # Exact tests> y <- matrix(rnbinom(20,mu=10,size=3/2),5,4)> group <- factor(c(1,1,2,2))> ys <- splitIntoGroupsPseudo(y,group,pair=c(1,2))> exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3)[1] 0.1334396 0.6343568 0.7280015 0.7124912 0.3919258> > y <- matrix(rnbinom(5*7,mu=10,size=3/2),5,7)> group <- factor(c(1,1,2,2,3,3,3))> ys <- splitIntoGroupsPseudo(y,group,pair=c(1,3))> exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3)[1] 1.0000000 0.4486382 1.0000000 0.9390317 0.4591241> exactTestBetaApprox(ys$y1,ys$y2,dispersion=2/3)[1] 1.0000000 0.4492969 1.0000000 0.9421695 0.4589194> > y[1,3:4] <- 0> design <- model.matrix(~group)> fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7)> summary(fit$coefficients) (Intercept) group2 group3 Min. :-1.817 Min. :-5.0171 Min. :-0.64646 1st Qu.:-1.812 1st Qu.:-1.1565 1st Qu.:-0.13919 Median :-1.712 Median : 0.1994 Median :-0.10441 Mean :-1.625 Mean :-0.9523 Mean :-0.04217 3rd Qu.:-1.429 3rd Qu.: 0.3755 3rd Qu.:-0.04305 Max. :-1.356 Max. : 0.8374 Max. : 0.72227 > > lrt <- glmLRT(fit,contrast=cbind(c(0,1,0),c(0,0,1)))> topTags(lrt)Coefficient: LR test on 2 degrees of freedom logFC.1 logFC.2 logCPM LR PValue FDR1 -7.2381060 -0.0621100 17.19071 10.7712171 0.004582051 0.022910265 -1.6684268 -0.9326507 17.33529 1.7309951 0.420842115 0.909679672 1.2080938 1.0420198 18.24544 1.0496688 0.591653347 0.909679674 0.5416704 -0.1506381 17.57744 0.3958596 0.820427427 0.909679673 0.2876249 -0.2008143 18.06216 0.1893255 0.909679672 0.90967967> design <- model.matrix(~0+group)> fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7)> lrt <- glmLRT(fit,contrast=cbind(c(-1,1,0),c(0,-1,1),c(-1,0,1)))> topTags(lrt)Coefficient: LR test on 2 degrees of freedom logFC.1 logFC.2 logFC.3 logCPM LR PValue FDR1 -7.2381060 7.1759960 -0.0621100 17.19071 10.7712171 0.004582051 0.022910265 -1.6684268 0.7357761 -0.9326507 17.33529 1.7309951 0.420842115 0.909679672 1.2080938 -0.1660740 1.0420198 18.24544 1.0496688 0.591653347 0.909679674 0.5416704 -0.6923084 -0.1506381 17.57744 0.3958596 0.820427427 0.909679673 0.2876249 -0.4884392 -0.2008143 18.06216 0.1893255 0.909679672 0.90967967> > # simple Good-Turing algorithm runs.> test1 <- 1:9> freq1 <- c(2018046, 449721, 188933, 105668, 68379, 48190, 35709, 37710, 22280)> goodTuring(rep(test1, freq1))$P0[1] 0.3814719$proportion[1] 8.035111e-08 2.272143e-07 4.060582e-07 5.773690e-07 7.516705e-07[6] 9.276808e-07 1.104759e-06 1.282549e-06 1.460837e-06$count[1] 1 2 3 4 5 6 7 8 9$n[1] 2018046 449721 188933 105668 68379 48190 35709 37710 22280$n0[1] 0> test2 <- c(312, 14491, 16401, 65124, 129797, 323321, 366051, 368599, 405261, 604962)> goodTuring(test2)$P0[1] 0$proportion [1] 0.0001362656 0.0063162959 0.0071487846 0.0283850925 0.0565733349 [6] 0.1409223124 0.1595465235 0.1606570896 0.1766365144 0.2636777866$count [1] 312 14491 16401 65124 129797 323321 366051 368599 405261 604962$n [1] 1 1 1 1 1 1 1 1 1 1$n0[1] 0> > # Dispersion estimation with fitted values equal to zero> ngenes <- 100> nsamples <- 3> y <- matrix(rnbinom(ngenes*nsamples,size=5,mu=10),ngenes,nsamples)> Group <- factor(c(1,2,2))> design <- model.matrix(~Group)> y[1:5,2:3] <- 0> y <- DGEList(counts=y,group=Group)> > fit <- glmQLFit(y,design,legacy=FALSE,keep.unit.mat=TRUE)> fit$dispersion[1] 0.1913324> summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3227 0.7307 1.0467 1.1891 1.6050 3.2255 > fit$unit.deviance.adj[1:10,] Sample1 Sample2 Sample31 0 0.000000e+00 0.000000e+002 0 0.000000e+00 0.000000e+003 0 0.000000e+00 0.000000e+004 0 0.000000e+00 0.000000e+005 0 0.000000e+00 0.000000e+006 0 8.141239e-02 9.842350e-027 0 3.047603e-01 2.190646e-018 0 1.749020e-02 1.620417e-029 0 1.098493e+00 6.237134e-0110 0 7.266233e-05 7.242688e-05> fit$unit.df.adj[1:10,] Sample1 Sample2 Sample31 0 0.0000000 0.00000002 0 0.0000000 0.00000003 0 0.0000000 0.00000004 0 0.0000000 0.00000005 0 0.0000000 0.00000006 0 0.4865169 0.48806177 0 0.4965337 0.49943198 0 0.4945979 0.49557959 0 0.4905011 0.491729410 0 0.4945957 0.4955775> summary(fit$deviance.adj) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.08228 0.53816 1.09592 1.72337 5.48746 > summary(fit$df.residual.adj) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.9756 0.9816 0.9356 0.9882 1.0912 > > # diffSplice> GeneID <- rep(1:10,each=10)> ds <- diffSplice(fit,geneid=GeneID)Total number of exons: 100 Total number of genes: 10 Number of genes with 1 exon: 0 Mean number of exons in a gene: 10 Max number of exons in a gene: 10 > topSplice(ds,test="F") GeneID NExons F P.Value FDR1 1 10 7.2590306 2.852463e-05 0.00028524638 8 10 1.3723028 2.418392e-01 0.97052431694 4 10 1.0451997 4.278592e-01 0.97052431699 9 10 0.9638621 4.870572e-01 0.97052431695 5 10 0.9063973 5.317373e-01 0.97052431697 7 10 0.8298259 5.940627e-01 0.97052431696 6 10 0.5388506 8.349931e-01 0.97052431693 3 10 0.3743815 9.387844e-01 0.97052431692 2 10 0.3501548 9.499887e-01 0.970524316910 10 10 0.2962360 9.705243e-01 0.9705243169> topSplice(ds,test="simes") GeneID NExons P.Value FDR1 1 10 0.009637957 0.096379578 8 10 0.228726421 0.985857249 9 10 0.387580728 0.985857247 7 10 0.423403151 0.985857244 4 10 0.593224387 0.985857245 5 10 0.726396305 0.985857246 6 10 0.801299346 0.985857242 2 10 0.922046804 0.9858572410 10 10 0.961722989 0.985857243 3 10 0.985857239 0.98585724> topSplice(ds,test="t") ExonID GeneID logFC t P.Value FDR5 5 1 -4.103231 -3.607173 0.001253369 0.096379576 6 1 2.920450 3.322100 0.002596601 0.096379578 8 1 2.506536 3.279451 0.002891387 0.096379574 4 1 -3.694004 -3.149148 0.004005347 0.100133662 2 1 -3.519395 -2.962365 0.006341523 0.1268304674 74 8 2.066258 2.392110 0.022872642 0.3468721010 10 1 1.691740 2.388046 0.024281047 0.346872101 1 1 -2.755095 -2.214511 0.035519773 0.384911963 3 1 -2.755095 -2.214511 0.035519773 0.3849119685 85 9 -1.522989 -2.156323 0.038758073 0.38491196> > vfit <- voomLmFit(y,design)> ds <- diffSplice(vfit,geneid=GeneID)Total number of exons: 100 Total number of genes: 10 Number of genes with 1 exon: 0 Mean number of exons in a gene: 10 Max number of exons in a gene: 10 > topSplice(ds,test="F") GeneID NExons F P.Value FDR1 1 10 5.9148762 0.0005690819 0.0056908195 5 10 0.8456570 0.5831091010 0.9959249169 9 10 0.7383068 0.6708973693 0.9959249167 7 10 0.6718248 0.7260331196 0.9959249164 4 10 0.6611347 0.7348452566 0.9959249168 8 10 0.4939610 0.8640748170 0.9959249166 6 10 0.4207029 0.9110671096 0.9959249163 3 10 0.3260954 0.9578135984 0.9959249162 2 10 0.2599682 0.9796508664 0.99592491610 10 10 0.1651623 0.9959249163 0.995924916> topSplice(ds,test="simes") GeneID NExons P.Value FDR1 1 10 0.008337696 0.083376965 5 10 0.707551263 0.977369249 9 10 0.729667397 0.977369244 4 10 0.830134473 0.977369247 7 10 0.866749023 0.977369246 6 10 0.899707598 0.977369243 3 10 0.908866165 0.977369248 8 10 0.951942595 0.977369242 2 10 0.967451764 0.9773692410 10 10 0.977369236 0.97736924> topSplice(ds,test="t") ExonID GeneID logFC t P.Value FDR5 5 1 -4.348335 -3.800229 0.001211500 0.0833769610 10 1 2.370302 3.660050 0.001667539 0.083376964 4 1 -3.781654 -3.167928 0.005071386 0.169046202 2 1 -3.523729 -2.797191 0.011503569 0.287589238 8 1 2.844177 2.247567 0.036690931 0.733818626 6 1 3.269802 1.924552 0.069412814 0.9772240070 70 7 -1.668741 -1.786482 0.086674902 0.9772240085 85 9 -1.920152 -1.633648 0.115397947 0.9772240074 74 8 2.880866 1.482994 0.151103235 0.977224001 1 1 -2.451261 -1.489990 0.152662112 0.97722400> > y <- estimateCommonDisp(y)> y$common.dispersion[1] 0.2407907> y <- estimateGLMCommonDisp(y,design)> y$common.dispersion[1] 0.2181198> y <- estimateGLMTrendedDisp(y,design)> y$trended.dispersion[1:10] [1] 0.3398724 0.2889110 0.3398724 0.2769872 0.2494308 0.2562610 0.2368123 [8] 0.2052054 0.2024856 0.1932597> summary(y$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1814 0.2065 0.2188 0.2276 0.2413 0.3399 > y <- estimateGLMTagwiseDisp(y,design)> y$tagwise.dispersion[1:10] [1] 0.4396666 0.3416568 0.4270057 0.3121297 0.2525866 0.2439067 0.2413469 [8] 0.1702664 0.2125485 0.1349552> summary(y$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1304 0.1799 0.2212 0.2323 0.2678 0.4397 > y <- estimateDisp(y,design)> y$prior.df[1] 2.18181> y$common.dispersion[1] 0.2185181> y$trended.dispersion[1:10] [1] 0.2685493 0.2668941 0.2685493 0.2624686 0.2532971 0.2554438 0.2386225 [8] 0.1977382 0.1975037 0.1967320> summary(y$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1958 0.1979 0.2098 0.2216 0.2441 0.2685 > y$tagwise.dispersion[1:10] [1] 0.2685493 0.2668941 0.2685493 0.2624686 0.2532971 0.1485295 0.1890927 [8] 0.1036788 0.2510456 0.1024813> summary(y$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.09756 0.13374 0.19204 0.22241 0.26731 0.60911 > > # glmQLFit> fit <- glmQLFit(y,design,legacy=FALSE,keep.unit.mat=TRUE)> fit$dispersion[1] 0.1963021> summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3180 0.7118 1.0289 1.1702 1.5765 3.1867 > fit$unit.deviance.adj[1:10,] Sample1 Sample2 Sample31 0 0.0000000000 0.000000e+002 0 0.0000000000 0.000000e+003 0 0.0000000000 0.000000e+004 0 0.0000000000 0.000000e+005 0 0.0000000000 0.000000e+006 0 0.0800369771 9.682457e-027 0 0.3016851330 2.165283e-018 0 0.0171385659 1.587435e-029 0 1.0794653385 6.116829e-0110 0 0.0000711943 7.095954e-05> fit$unit.df.adj[1:10,] Sample1 Sample2 Sample31 0 0.0000000 0.00000002 0 0.0000000 0.00000003 0 0.0000000 0.00000004 0 0.0000000 0.00000005 0 0.0000000 0.00000006 0 0.4865584 0.48808377 0 0.4973603 0.50024828 0 0.4944987 0.49545889 0 0.4904124 0.491618410 0 0.4944965 0.4954567> summary(fit$deviance.adj) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.08084 0.53006 1.07828 1.69219 5.39198 > summary(fit$df.residual.adj) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.9757 0.9814 0.9358 0.9880 1.0941 > fit <- glmQLFit(y,design,legacy=TRUE)> summary(fit$dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1958 0.1979 0.2098 0.2216 0.2441 0.2685 > summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.06182 0.60040 0.79878 0.91179 1.16628 2.59834 > > proc.time() user system elapsed 3.290 0.173 4.531edgeR.Rcheck/tests/edgeR-Tests.Rout.save
R version 4.5.1 (2025-06-13 ucrt) -- "Great Square Root"Copyright (C) 2025 The R Foundation for Statistical ComputingPlatform: x86_64-w64-mingw32/x64R is free software and comes with ABSOLUTELY NO WARRANTY.You are welcome to redistribute it under certain conditions.Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English localeR is a collaborative project with many contributors.Type 'contributors()' for more information and'citation()' on how to cite R or R packages in publications.Type 'demo()' for some demos, 'help()' for on-line help, or'help.start()' for an HTML browser interface to help.Type 'q()' to quit R.> library(edgeR)Loading required package: limma> options(warnPartialMatchArgs=TRUE,warnPartialMatchAttr=TRUE,warnPartialMatchDollar=TRUE)> > set.seed(0); u <- runif(100)> > # generate raw counts from NB, create list object> y <- matrix(rnbinom(80,size=5,mu=10),nrow=20)> y <- rbind(0,c(0,0,2,2),y)> rownames(y) <- paste("Tag",1:nrow(y),sep=".")> d <- DGEList(counts=y,group=rep(1:2,each=2),lib.size=1001:1004)> > filterByExpr(d) Tag.1 Tag.2 Tag.3 Tag.4 Tag.5 Tag.6 Tag.7 Tag.8 Tag.9 Tag.10 Tag.11 FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE Tag.12 Tag.13 Tag.14 Tag.15 Tag.16 Tag.17 Tag.18 Tag.19 Tag.20 Tag.21 Tag.22 TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE > > # estimate common dispersion and find differences in expression> d <- estimateCommonDisp(d)> d$common.dispersion[1] 0.210292> de <- exactTest(d)> summary(de$table) logFC logCPM PValue Min. :-1.7266 Min. :10.96 Min. :0.01976 1st Qu.:-0.4855 1st Qu.:13.21 1st Qu.:0.33120 Median : 0.2253 Median :13.37 Median :0.56514 Mean : 0.1877 Mean :13.26 Mean :0.54504 3rd Qu.: 0.5258 3rd Qu.:13.70 3rd Qu.:0.81052 Max. : 4.0861 Max. :14.31 Max. :1.00000 > topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450964 13.73726 0.01975954 0.4347099Tag.21 -1.7265870 13.38327 0.06131012 0.6744114Tag.6 -1.6329986 12.81479 0.12446044 0.8982100Tag.2 4.0861092 11.54121 0.16331090 0.8982100Tag.16 0.9324996 13.57074 0.29050785 0.9655885Tag.20 0.8543138 13.76364 0.31736609 0.9655885Tag.12 0.7081170 14.31389 0.37271028 0.9655885Tag.19 -0.7976602 13.31405 0.40166354 0.9655885Tag.3 -0.7300410 13.54155 0.42139935 0.9655885Tag.8 -0.7917906 12.86353 0.47117217 0.9655885> > d2 <- estimateTagwiseDisp(d,trend="none",prior.df=20)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1757 0.1896 0.1989 0.2063 0.2185 0.2677 > de <- exactTest(d2,dispersion="common")> topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450964 13.73726 0.01975954 0.4347099Tag.21 -1.7265870 13.38327 0.06131012 0.6744114Tag.6 -1.6329986 12.81479 0.12446044 0.8982100Tag.2 4.0861092 11.54121 0.16331090 0.8982100Tag.16 0.9324996 13.57074 0.29050785 0.9655885Tag.20 0.8543138 13.76364 0.31736609 0.9655885Tag.12 0.7081170 14.31389 0.37271028 0.9655885Tag.19 -0.7976602 13.31405 0.40166354 0.9655885Tag.3 -0.7300410 13.54155 0.42139935 0.9655885Tag.8 -0.7917906 12.86353 0.47117217 0.9655885> > de <- exactTest(d2)> topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450987 13.73726 0.01327001 0.2919403Tag.21 -1.7265897 13.38327 0.05683886 0.6252275Tag.6 -1.6329910 12.81479 0.11460208 0.8404152Tag.2 4.0861092 11.54121 0.16126207 0.8869414Tag.16 0.9324975 13.57074 0.28103256 0.9669238Tag.20 0.8543178 13.76364 0.30234789 0.9669238Tag.12 0.7081149 14.31389 0.37917895 0.9669238Tag.19 -0.7976633 13.31405 0.40762735 0.9669238Tag.3 -0.7300478 13.54155 0.40856822 0.9669238Tag.8 -0.7918243 12.86353 0.49005179 0.9669238> > d2 <- estimateTagwiseDisp(d,trend="movingave",span=0.4,prior.df=20)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1005 0.1629 0.2064 0.2077 0.2585 0.3164 > de <- exactTest(d2)> topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450951 13.73726 0.02427872 0.5341319Tag.21 -1.7265927 13.38327 0.05234833 0.5758316Tag.6 -1.6330014 12.81479 0.12846308 0.8954397Tag.2 4.0861092 11.54121 0.16280722 0.8954397Tag.16 0.9324887 13.57074 0.24308201 0.9711975Tag.20 0.8543044 13.76364 0.35534649 0.9711975Tag.19 -0.7976535 13.31405 0.38873717 0.9711975Tag.3 -0.7300525 13.54155 0.40001438 0.9711975Tag.12 0.7080985 14.31389 0.43530227 0.9711975Tag.8 -0.7918376 12.86353 0.49782701 0.9711975> > summary(exactTest(d2,rejection.region="smallp")$table$PValue) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02428 0.36369 0.55662 0.54319 0.78889 1.00000 > summary(exactTest(d2,rejection.region="deviance")$table$PValue) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02428 0.36369 0.55662 0.54319 0.78889 1.00000 > > d2 <- estimateTagwiseDisp(d,trend="loess",span=0.8,prior.df=20)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1165 0.1449 0.1832 0.1848 0.2116 0.2825 > de <- exactTest(d2)> topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450979 13.73726 0.01546795 0.3402949Tag.21 -1.7266049 13.38327 0.03545446 0.3899990Tag.6 -1.6329841 12.81479 0.10632987 0.7797524Tag.2 4.0861092 11.54121 0.16057893 0.8831841Tag.16 0.9324935 13.57074 0.26348818 0.9658389Tag.20 0.8543140 13.76364 0.31674090 0.9658389Tag.19 -0.7976354 13.31405 0.35564858 0.9658389Tag.3 -0.7300593 13.54155 0.38833737 0.9658389Tag.12 0.7081041 14.31389 0.41513004 0.9658389Tag.8 -0.7918152 12.86353 0.48483449 0.9658389> > d2 <- estimateTagwiseDisp(d,trend="tricube",span=0.8,prior.df=20)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1165 0.1449 0.1832 0.1848 0.2116 0.2825 > de <- exactTest(d2)> topTags(de)Comparison of groups: 2-1 logFC logCPM PValue FDRTag.17 2.0450979 13.73726 0.01546795 0.3402949Tag.21 -1.7266049 13.38327 0.03545446 0.3899990Tag.6 -1.6329841 12.81479 0.10632987 0.7797524Tag.2 4.0861092 11.54121 0.16057893 0.8831841Tag.16 0.9324935 13.57074 0.26348818 0.9658389Tag.20 0.8543140 13.76364 0.31674090 0.9658389Tag.19 -0.7976354 13.31405 0.35564858 0.9658389Tag.3 -0.7300593 13.54155 0.38833737 0.9658389Tag.12 0.7081041 14.31389 0.41513004 0.9658389Tag.8 -0.7918152 12.86353 0.48483449 0.9658389> > # mglmOneWay> design <- model.matrix(~group,data=d$samples)> mglmOneWay(d[1:10,],design,dispersion=0.2)$coefficients (Intercept) group2Tag.1 -1.000000e+08 0.000000e+00Tag.2 -1.000000e+08 1.000000e+08Tag.3 2.525729e+00 -5.108256e-01Tag.4 2.525729e+00 1.484200e-01Tag.5 2.140066e+00 -1.941560e-01Tag.6 2.079442e+00 -1.163151e+00Tag.7 2.014903e+00 2.363888e-01Tag.8 1.945910e+00 -5.596158e-01Tag.9 1.504077e+00 2.006707e-01Tag.10 2.302585e+00 2.623643e-01$fitted.values Sample1 Sample2 Sample3 Sample4Tag.1 0.0 0.0 0.0 0.0Tag.2 0.0 0.0 2.0 2.0Tag.3 12.5 12.5 7.5 7.5Tag.4 12.5 12.5 14.5 14.5Tag.5 8.5 8.5 7.0 7.0Tag.6 8.0 8.0 2.5 2.5Tag.7 7.5 7.5 9.5 9.5Tag.8 7.0 7.0 4.0 4.0Tag.9 4.5 4.5 5.5 5.5Tag.10 10.0 10.0 13.0 13.0> mglmOneWay(d[1:10,],design,dispersion=0)$coefficients (Intercept) group2Tag.1 -1.000000e+08 0.000000e+00Tag.2 -1.000000e+08 1.000000e+08Tag.3 2.525729e+00 -5.108256e-01Tag.4 2.525729e+00 1.484200e-01Tag.5 2.140066e+00 -1.941560e-01Tag.6 2.079442e+00 -1.163151e+00Tag.7 2.014903e+00 2.363888e-01Tag.8 1.945910e+00 -5.596158e-01Tag.9 1.504077e+00 2.006707e-01Tag.10 2.302585e+00 2.623643e-01$fitted.values Sample1 Sample2 Sample3 Sample4Tag.1 0.0 0.0 0.0 0.0Tag.2 0.0 0.0 2.0 2.0Tag.3 12.5 12.5 7.5 7.5Tag.4 12.5 12.5 14.5 14.5Tag.5 8.5 8.5 7.0 7.0Tag.6 8.0 8.0 2.5 2.5Tag.7 7.5 7.5 9.5 9.5Tag.8 7.0 7.0 4.0 4.0Tag.9 4.5 4.5 5.5 5.5Tag.10 10.0 10.0 13.0 13.0> > fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5/4)> lrt <- glmLRT(fit,coef=2)> topTags(lrt)Coefficient: group2 logFC logCPM LR PValue FDRTag.17 2.0450964 13.73726 6.0485417 0.01391779 0.3058698Tag.2 4.0861092 11.54121 4.8400340 0.02780635 0.3058698Tag.21 -1.7265870 13.38327 4.0777825 0.04345065 0.3186381Tag.6 -1.6329986 12.81479 3.0078205 0.08286364 0.4557500Tag.16 0.9324996 13.57074 1.3477682 0.24566867 0.8276702Tag.20 0.8543138 13.76364 1.1890032 0.27553071 0.8276702Tag.19 -0.7976602 13.31405 0.9279151 0.33540526 0.8276702Tag.12 0.7081170 14.31389 0.9095513 0.34023349 0.8276702Tag.3 -0.7300410 13.54155 0.8300307 0.36226364 0.8276702Tag.8 -0.7917906 12.86353 0.7830377 0.37621371 0.8276702> > fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5)> summary(fit$coefficients) (Intercept) group2 Min. :-7.604 Min. :-1.13681 1st Qu.:-4.895 1st Qu.:-0.32341 Median :-4.713 Median : 0.15083 Mean :-4.940 Mean : 0.07817 3rd Qu.:-4.524 3rd Qu.: 0.35163 Max. :-4.107 Max. : 1.60864 > > fit <- glmFit(d,design,prior.count=0.5/4)> lrt <- glmLRT(fit,coef=2)> topTags(lrt)Coefficient: group2 logFC logCPM LR PValue FDRTag.17 2.0450964 13.73726 6.0485417 0.01391779 0.3058698Tag.2 4.0861092 11.54121 4.8400340 0.02780635 0.3058698Tag.21 -1.7265870 13.38327 4.0777825 0.04345065 0.3186381Tag.6 -1.6329986 12.81479 3.0078205 0.08286364 0.4557500Tag.16 0.9324996 13.57074 1.3477682 0.24566867 0.8276702Tag.20 0.8543138 13.76364 1.1890032 0.27553071 0.8276702Tag.19 -0.7976602 13.31405 0.9279151 0.33540526 0.8276702Tag.12 0.7081170 14.31389 0.9095513 0.34023349 0.8276702Tag.3 -0.7300410 13.54155 0.8300307 0.36226364 0.8276702Tag.8 -0.7917906 12.86353 0.7830377 0.37621371 0.8276702> > dglm <- estimateGLMCommonDisp(d,design)> dglm$common.dispersion[1] 0.2033282> dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20)> summary(dglm$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1756 0.1879 0.1998 0.2031 0.2135 0.2578 > fit <- glmFit(dglm,design,prior.count=0.5/4)> lrt <- glmLRT(fit,coef=2)> topTags(lrt)Coefficient: group2 logFC logCPM LR PValue FDRTag.17 2.0450988 13.73727 6.8001118 0.009115216 0.2005348Tag.2 4.0861092 11.54122 4.8594088 0.027495756 0.2872068Tag.21 -1.7265904 13.38327 4.2537154 0.039164558 0.2872068Tag.6 -1.6329904 12.81479 3.1763761 0.074710253 0.4109064Tag.16 0.9324970 13.57074 1.4126709 0.234613512 0.8499599Tag.20 0.8543183 13.76364 1.2721097 0.259371274 0.8499599Tag.19 -0.7976614 13.31405 0.9190392 0.337727381 0.8499599Tag.12 0.7081163 14.31389 0.9014515 0.342392806 0.8499599Tag.3 -0.7300488 13.54155 0.8817937 0.347710872 0.8499599Tag.8 -0.7918166 12.86353 0.7356185 0.391068049 0.8603497> dglm <- estimateGLMTrendedDisp(dglm,design)> summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1522 0.1676 0.1740 0.1887 0.2000 0.3469 > dglm <- estimateGLMTrendedDisp(dglm,design,method="power")> summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1522 0.1676 0.1740 0.1887 0.2000 0.3469 > dglm <- estimateGLMTrendedDisp(dglm,design,method="spline")> summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.09353 0.11082 0.15463 0.19006 0.23050 0.52006 > dglm <- estimateGLMTrendedDisp(dglm,design,method="bin.spline")> summary(dglm$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1997 0.1997 0.1997 0.1997 0.1997 0.1997 > dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20)> summary(dglm$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1385 0.1792 0.1964 0.1935 0.2026 0.2709 > > dglm2 <- estimateDisp(dglm, design)> summary(dglm2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1652 0.1740 0.1821 0.1852 0.1909 0.2259 > dglm2 <- estimateDisp(dglm, design, prior.df=20)> summary(dglm2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1527 0.1669 0.1814 0.1858 0.1951 0.2497 > dglm2 <- estimateDisp(dglm, design, robust=TRUE)> summary(dglm2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1652 0.1735 0.1822 0.1854 0.1905 0.2280 > > # Continuous trend> nlibs <- 3> ntags <- 1000> dispersion.true <- 0.1> # Make first transcript respond to covariate x> x <- 0:2> design <- model.matrix(~x)> beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1)))> mu.true <- 2^(beta.true %*% t(design))> # Generate count data> y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true)> y <- matrix(y,ntags,nlibs)> colnames(y) <- c("x0","x1","x2")> rownames(y) <- paste("Gene",1:ntags,sep="")> d <- DGEList(y)> d <- normLibSizes(d,method="TMM")> fit <- glmFit(d, design, dispersion=dispersion.true, prior.count=0.5/3)> results <- glmLRT(fit, coef=2)> topTags(results)Coefficient: x logFC logCPM LR PValue FDRGene1 2.907024 13.56183 38.738512 4.845536e-10 4.845536e-07Gene61 2.855317 10.27136 10.738307 1.049403e-03 5.247015e-01Gene62 -2.123902 10.53174 8.818703 2.981585e-03 8.334760e-01Gene134 -1.949073 10.53355 8.125889 4.363759e-03 8.334760e-01Gene740 -1.610046 10.94907 8.013408 4.643227e-03 8.334760e-01Gene354 2.022698 10.45066 7.826308 5.149118e-03 8.334760e-01Gene5 1.856816 10.45249 7.214238 7.232750e-03 8.334760e-01Gene746 -1.798331 10.53094 6.846262 8.882693e-03 8.334760e-01Gene110 1.623148 10.68607 6.737984 9.438120e-03 8.334760e-01Gene383 1.637140 10.75412 6.687530 9.708965e-03 8.334760e-01> d1 <- estimateGLMCommonDisp(d, design, verbose=TRUE)Disp = 0.10253 , BCV = 0.3202 > glmFit(d,design,dispersion=dispersion.true, prior.count=0.5/3)An object of class "DGEGLM"$coefficients (Intercept) xGene1 -7.391745 2.0149958Gene2 -7.318483 -0.7611895Gene3 -6.831702 -0.1399478Gene4 -7.480255 0.5172002Gene5 -8.747793 1.2870467995 more rows ...$fitted.values x0 x1 x2Gene1 2.3570471 18.954454 138.2791328Gene2 2.5138172 1.089292 0.4282107Gene3 4.1580452 3.750528 3.0690081Gene4 2.1012460 3.769592 6.1349937Gene5 0.5080377 2.136398 8.1502486995 more rows ...$deviance[1] 6.38037545 1.46644913 1.38532340 0.01593969 1.03894513995 more elements ...$iter[1] 8 4 4 4 6995 more elements ...$failed[1] FALSE FALSE FALSE FALSE FALSE995 more elements ...$method[1] "levenberg"$counts x0 x1 x2Gene1 0 30 110Gene2 2 2 0Gene3 3 6 2Gene4 2 4 6Gene5 1 1 9995 more rows ...$unshrunk.coefficients (Intercept) xGene1 -7.437763 2.0412762Gene2 -7.373370 -0.8796273Gene3 -6.870127 -0.1465014Gene4 -7.552642 0.5410832Gene5 -8.972372 1.3929679995 more rows ...$df.residual[1] 1 1 1 1 1995 more elements ...$design (Intercept) x1 1 02 1 13 1 2attr(,"assign")[1] 0 1$offset [,1] [,2] [,3][1,] 8.295172 8.338525 8.284484attr(,"class")[1] "CompressedMatrix"attr(,"Dims")[1] 5 3attr(,"repeat.row")[1] TRUEattr(,"repeat.col")[1] FALSE995 more rows ...$dispersion[1] 0.1$prior.count[1] 0.1666667$samples group lib.size norm.factorsx0 1 4001 1.0008730x1 1 4176 1.0014172x2 1 3971 0.9977138$AveLogCPM[1] 13.561832 9.682757 10.447014 10.532113 10.452489995 more elements ...> > normLibSizes(d$counts,method="TMMwsp") x0 x1 x2 0.9992437 1.0077007 0.9931093 > > d2 <- estimateDisp(d, design)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.06382 0.09689 0.11782 0.11373 0.12745 0.13507 > d2 <- estimateDisp(d, design, prior.df=20)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.04862 0.09629 0.11283 0.11358 0.12412 0.37107 > d2 <- estimateDisp(d, design, robust=TRUE)> summary(d2$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.06382 0.09689 0.11782 0.11373 0.12745 0.13507 > > # Exact tests> y <- matrix(rnbinom(20,mu=10,size=3/2),5,4)> group <- factor(c(1,1,2,2))> ys <- splitIntoGroupsPseudo(y,group,pair=c(1,2))> exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3)[1] 0.1334396 0.6343568 0.7280015 0.7124912 0.3919258> > y <- matrix(rnbinom(5*7,mu=10,size=3/2),5,7)> group <- factor(c(1,1,2,2,3,3,3))> ys <- splitIntoGroupsPseudo(y,group,pair=c(1,3))> exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3)[1] 1.0000000 0.4486382 1.0000000 0.9390317 0.4591241> exactTestBetaApprox(ys$y1,ys$y2,dispersion=2/3)[1] 1.0000000 0.4492969 1.0000000 0.9421695 0.4589194> > y[1,3:4] <- 0> design <- model.matrix(~group)> fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7)> summary(fit$coefficients) (Intercept) group2 group3 Min. :-1.817 Min. :-5.0171 Min. :-0.64646 1st Qu.:-1.812 1st Qu.:-1.1565 1st Qu.:-0.13919 Median :-1.712 Median : 0.1994 Median :-0.10441 Mean :-1.625 Mean :-0.9523 Mean :-0.04217 3rd Qu.:-1.429 3rd Qu.: 0.3755 3rd Qu.:-0.04305 Max. :-1.356 Max. : 0.8374 Max. : 0.72227 > > lrt <- glmLRT(fit,contrast=cbind(c(0,1,0),c(0,0,1)))> topTags(lrt)Coefficient: LR test on 2 degrees of freedom logFC.1 logFC.2 logCPM LR PValue FDR1 -7.2381060 -0.0621100 17.19071 10.7712171 0.004582051 0.022910265 -1.6684268 -0.9326507 17.33529 1.7309951 0.420842115 0.909679672 1.2080938 1.0420198 18.24544 1.0496688 0.591653347 0.909679674 0.5416704 -0.1506381 17.57744 0.3958596 0.820427427 0.909679673 0.2876249 -0.2008143 18.06216 0.1893255 0.909679672 0.90967967> design <- model.matrix(~0+group)> fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7)> lrt <- glmLRT(fit,contrast=cbind(c(-1,1,0),c(0,-1,1),c(-1,0,1)))> topTags(lrt)Coefficient: LR test on 2 degrees of freedom logFC.1 logFC.2 logFC.3 logCPM LR PValue FDR1 -7.2381060 7.1759960 -0.0621100 17.19071 10.7712171 0.004582051 0.022910265 -1.6684268 0.7357761 -0.9326507 17.33529 1.7309951 0.420842115 0.909679672 1.2080938 -0.1660740 1.0420198 18.24544 1.0496688 0.591653347 0.909679674 0.5416704 -0.6923084 -0.1506381 17.57744 0.3958596 0.820427427 0.909679673 0.2876249 -0.4884392 -0.2008143 18.06216 0.1893255 0.909679672 0.90967967> > # simple Good-Turing algorithm runs.> test1 <- 1:9> freq1 <- c(2018046, 449721, 188933, 105668, 68379, 48190, 35709, 37710, 22280)> goodTuring(rep(test1, freq1))$P0[1] 0.3814719$proportion[1] 8.035111e-08 2.272143e-07 4.060582e-07 5.773690e-07 7.516705e-07[6] 9.276808e-07 1.104759e-06 1.282549e-06 1.460837e-06$count[1] 1 2 3 4 5 6 7 8 9$n[1] 2018046 449721 188933 105668 68379 48190 35709 37710 22280$n0[1] 0> test2 <- c(312, 14491, 16401, 65124, 129797, 323321, 366051, 368599, 405261, 604962)> goodTuring(test2)$P0[1] 0$proportion [1] 0.0001362656 0.0063162959 0.0071487846 0.0283850925 0.0565733349 [6] 0.1409223124 0.1595465235 0.1606570896 0.1766365144 0.2636777866$count [1] 312 14491 16401 65124 129797 323321 366051 368599 405261 604962$n [1] 1 1 1 1 1 1 1 1 1 1$n0[1] 0> > # Dispersion estimation with fitted values equal to zero> ngenes <- 100> nsamples <- 3> y <- matrix(rnbinom(ngenes*nsamples,size=5,mu=10),ngenes,nsamples)> Group <- factor(c(1,2,2))> design <- model.matrix(~Group)> y[1:5,2:3] <- 0> y <- DGEList(counts=y,group=Group)> > fit <- glmQLFit(y,design,legacy=FALSE,keep.unit.mat=TRUE)> fit$dispersion[1] 0.1913324> summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3227 0.7307 1.0467 1.1891 1.6050 3.2255 > fit$unit.deviance.adj[1:10,] Sample1 Sample2 Sample31 0 0.000000e+00 0.000000e+002 0 0.000000e+00 0.000000e+003 0 0.000000e+00 0.000000e+004 0 0.000000e+00 0.000000e+005 0 0.000000e+00 0.000000e+006 0 8.141239e-02 9.842350e-027 0 3.047603e-01 2.190646e-018 0 1.749020e-02 1.620417e-029 0 1.098493e+00 6.237134e-0110 0 7.266233e-05 7.242688e-05> fit$unit.df.adj[1:10,] Sample1 Sample2 Sample31 0 0.0000000 0.00000002 0 0.0000000 0.00000003 0 0.0000000 0.00000004 0 0.0000000 0.00000005 0 0.0000000 0.00000006 0 0.4865169 0.48806177 0 0.4965337 0.49943198 0 0.4945979 0.49557959 0 0.4905011 0.491729410 0 0.4945957 0.4955775> summary(fit$deviance.adj) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.08228 0.53816 1.09592 1.72337 5.48746 > summary(fit$df.residual.adj) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.9756 0.9816 0.9356 0.9882 1.0912 > > # diffSplice> GeneID <- rep(1:10,each=10)> ds <- diffSplice(fit,geneid=GeneID)Total number of exons: 100 Total number of genes: 10 Number of genes with 1 exon: 0 Mean number of exons in a gene: 10 Max number of exons in a gene: 10 > topSplice(ds,test="F") GeneID NExons F P.Value FDR1 1 10 7.2590306 2.852463e-05 0.00028524638 8 10 1.3723028 2.418392e-01 0.97052431694 4 10 1.0451997 4.278592e-01 0.97052431699 9 10 0.9638621 4.870572e-01 0.97052431695 5 10 0.9063973 5.317373e-01 0.97052431697 7 10 0.8298259 5.940627e-01 0.97052431696 6 10 0.5388506 8.349931e-01 0.97052431693 3 10 0.3743815 9.387844e-01 0.97052431692 2 10 0.3501548 9.499887e-01 0.970524316910 10 10 0.2962360 9.705243e-01 0.9705243169> topSplice(ds,test="simes") GeneID NExons P.Value FDR1 1 10 0.009637957 0.096379578 8 10 0.228726421 0.985857249 9 10 0.387580728 0.985857247 7 10 0.423403151 0.985857244 4 10 0.593224387 0.985857245 5 10 0.726396305 0.985857246 6 10 0.801299346 0.985857242 2 10 0.922046804 0.9858572410 10 10 0.961722989 0.985857243 3 10 0.985857239 0.98585724> topSplice(ds,test="t") ExonID GeneID logFC t P.Value FDR5 5 1 -4.103231 -3.607173 0.001253369 0.096379576 6 1 2.920450 3.322100 0.002596601 0.096379578 8 1 2.506536 3.279451 0.002891387 0.096379574 4 1 -3.694004 -3.149148 0.004005347 0.100133662 2 1 -3.519395 -2.962365 0.006341523 0.1268304674 74 8 2.066258 2.392110 0.022872642 0.3468721010 10 1 1.691740 2.388046 0.024281047 0.346872101 1 1 -2.755095 -2.214511 0.035519773 0.384911963 3 1 -2.755095 -2.214511 0.035519773 0.3849119685 85 9 -1.522989 -2.156323 0.038758073 0.38491196> > vfit <- voomLmFit(y,design)> ds <- diffSplice(vfit,geneid=GeneID)Total number of exons: 100 Total number of genes: 10 Number of genes with 1 exon: 0 Mean number of exons in a gene: 10 Max number of exons in a gene: 10 > topSplice(ds,test="F") GeneID NExons F P.Value FDR1 1 10 5.9148762 0.0005690819 0.0056908195 5 10 0.8456570 0.5831091010 0.9959249169 9 10 0.7383068 0.6708973693 0.9959249167 7 10 0.6718248 0.7260331196 0.9959249164 4 10 0.6611347 0.7348452566 0.9959249168 8 10 0.4939610 0.8640748170 0.9959249166 6 10 0.4207029 0.9110671096 0.9959249163 3 10 0.3260954 0.9578135984 0.9959249162 2 10 0.2599682 0.9796508664 0.99592491610 10 10 0.1651623 0.9959249163 0.995924916> topSplice(ds,test="simes") GeneID NExons P.Value FDR1 1 10 0.008337696 0.083376965 5 10 0.707551263 0.977369249 9 10 0.729667397 0.977369244 4 10 0.830134473 0.977369247 7 10 0.866749023 0.977369246 6 10 0.899707598 0.977369243 3 10 0.908866165 0.977369248 8 10 0.951942595 0.977369242 2 10 0.967451764 0.9773692410 10 10 0.977369236 0.97736924> topSplice(ds,test="t") ExonID GeneID logFC t P.Value FDR5 5 1 -4.348335 -3.800229 0.001211500 0.0833769610 10 1 2.370302 3.660050 0.001667539 0.083376964 4 1 -3.781654 -3.167928 0.005071386 0.169046202 2 1 -3.523729 -2.797191 0.011503569 0.287589238 8 1 2.844177 2.247567 0.036690931 0.733818626 6 1 3.269802 1.924552 0.069412814 0.9772240070 70 7 -1.668741 -1.786482 0.086674902 0.9772240085 85 9 -1.920152 -1.633648 0.115397947 0.9772240074 74 8 2.880866 1.482994 0.151103235 0.977224001 1 1 -2.451261 -1.489990 0.152662112 0.97722400> > y <- estimateCommonDisp(y)> y$common.dispersion[1] 0.2407907> y <- estimateGLMCommonDisp(y,design)> y$common.dispersion[1] 0.2181198> y <- estimateGLMTrendedDisp(y,design)> y$trended.dispersion[1:10] [1] 0.3398724 0.2889110 0.3398724 0.2769872 0.2494308 0.2562610 0.2368123 [8] 0.2052054 0.2024856 0.1932597> summary(y$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1814 0.2065 0.2188 0.2276 0.2413 0.3399 > y <- estimateGLMTagwiseDisp(y,design)> y$tagwise.dispersion[1:10] [1] 0.4396666 0.3416568 0.4270057 0.3121297 0.2525866 0.2439067 0.2413469 [8] 0.1702664 0.2125485 0.1349552> summary(y$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1304 0.1799 0.2212 0.2323 0.2678 0.4397 > y <- estimateDisp(y,design)> y$prior.df[1] 2.18181> y$common.dispersion[1] 0.2185181> y$trended.dispersion[1:10] [1] 0.2685493 0.2668941 0.2685493 0.2624686 0.2532971 0.2554438 0.2386225 [8] 0.1977382 0.1975037 0.1967320> summary(y$trended.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1958 0.1979 0.2098 0.2216 0.2441 0.2685 > y$tagwise.dispersion[1:10] [1] 0.2685493 0.2668941 0.2685493 0.2624686 0.2532971 0.1485295 0.1890927 [8] 0.1036788 0.2510456 0.1024813> summary(y$tagwise.dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.09756 0.13374 0.19204 0.22241 0.26731 0.60911 > > # glmQLFit> fit <- glmQLFit(y,design,legacy=FALSE,keep.unit.mat=TRUE)> fit$dispersion[1] 0.1963021> summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3180 0.7118 1.0289 1.1702 1.5765 3.1867 > fit$unit.deviance.adj[1:10,] Sample1 Sample2 Sample31 0 0.0000000000 0.000000e+002 0 0.0000000000 0.000000e+003 0 0.0000000000 0.000000e+004 0 0.0000000000 0.000000e+005 0 0.0000000000 0.000000e+006 0 0.0800369771 9.682457e-027 0 0.3016851330 2.165283e-018 0 0.0171385659 1.587435e-029 0 1.0794653385 6.116829e-0110 0 0.0000711943 7.095954e-05> fit$unit.df.adj[1:10,] Sample1 Sample2 Sample31 0 0.0000000 0.00000002 0 0.0000000 0.00000003 0 0.0000000 0.00000004 0 0.0000000 0.00000005 0 0.0000000 0.00000006 0 0.4865584 0.48808377 0 0.4973603 0.50024828 0 0.4944987 0.49545889 0 0.4904124 0.491618410 0 0.4944965 0.4954567> summary(fit$deviance.adj) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.08084 0.53006 1.07828 1.69219 5.39198 > summary(fit$df.residual.adj) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.9757 0.9814 0.9358 0.9880 1.0941 > fit <- glmQLFit(y,design,legacy=TRUE)> summary(fit$dispersion) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1958 0.1979 0.2098 0.2216 0.2441 0.2685 > summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.06182 0.60040 0.79878 0.91179 1.16628 2.59834 > > proc.time() user system elapsed 1.37 0.28 1.71edgeR.Rcheck/edgeR-Ex.timings
| name | user | system | elapsed | |
| DGEList | 0.017 | 0.002 | 0.022 | |
| SE2DGEList | 0 | 0 | 0 | |
| Seurat2PB | 0.000 | 0.000 | 0.001 | |
| WLEB | 0.025 | 0.001 | 0.032 | |
| addPriorCount | 0.003 | 0.001 | 0.003 | |
| adjustedProfileLik | 0.005 | 0.000 | 0.006 | |
| aveLogCPM | 0.001 | 0.000 | 0.001 | |
| binomTest | 0.002 | 0.000 | 0.002 | |
| calcNormFactors | 0.009 | 0.001 | 0.010 | |
| camera | 0.254 | 0.010 | 0.470 | |
| catchSalmon | 0.000 | 0.000 | 0.001 | |
| cbind | 0.000 | 0.000 | 0.001 | |
| commonCondLogLikDerDelta | 0.003 | 0.001 | 0.003 | |
| condLogLikDerSize | 0.000 | 0.000 | 0.001 | |
| cpm | 0.003 | 0.001 | 0.006 | |
| cutWithMinN | 0.002 | 0.000 | 0.002 | |
| decidetestsDGE | 0.015 | 0.002 | 0.016 | |
| dglmStdResid | 0.012 | 0.002 | 0.013 | |
| diffSplice | 0.160 | 0.014 | 0.270 | |
| diffSpliceDGE | 0.029 | 0.005 | 0.045 | |
| dim | 0.002 | 0.000 | 0.002 | |
| dispBinTrend | 0.271 | 0.012 | 0.327 | |
| dispCoxReid | 0.015 | 0.001 | 0.020 | |
| dispCoxReidInterpolateTagwise | 0.015 | 0.002 | 0.020 | |
| dispCoxReidSplineTrend | 0.406 | 0.005 | 0.532 | |
| dropEmptyLevels | 0.001 | 0.001 | 0.002 | |
| edgeRUsersGuide | 0.002 | 0.001 | 0.001 | |
| effectiveLibSizes | 0.005 | 0.000 | 0.005 | |
| equalizeLibSizes | 0.015 | 0.001 | 0.016 | |
| estimateCommonDisp | 0.021 | 0.001 | 0.032 | |
| estimateDisp | 0.179 | 0.006 | 0.246 | |
| estimateExonGenewisedisp | 0.010 | 0.001 | 0.011 | |
| estimateGLMCommonDisp | 0.040 | 0.002 | 0.057 | |
| estimateGLMRobustDisp | 0.352 | 0.009 | 0.445 | |
| estimateGLMTagwiseDisp | 0.096 | 0.003 | 0.121 | |
| estimateGLMTrendedDisp | 0.092 | 0.003 | 0.164 | |
| estimateTagwiseDisp | 0.028 | 0.000 | 0.034 | |
| estimateTrendedDisp | 0.212 | 0.005 | 0.283 | |
| exactTest | 0.012 | 0.001 | 0.016 | |
| expandAsMatrix | 0.000 | 0.001 | 0.000 | |
| filterByExpr | 0.001 | 0.000 | 0.000 | |
| getCounts | 0.009 | 0.001 | 0.017 | |
| getPriorN | 0.002 | 0.001 | 0.003 | |
| gini | 0 | 0 | 0 | |
| glmLRT | 0 | 0 | 0 | |
| glmQLFTest | 0.000 | 0.001 | 0.000 | |
| glmQLFit | 0.194 | 0.012 | 0.268 | |
| glmTreat | 0.026 | 0.001 | 0.030 | |
| glmfit | 0.012 | 0.002 | 0.018 | |
| goana | 0 | 0 | 0 | |
| gof | 0.006 | 0.000 | 0.007 | |
| goodTuring | 0.006 | 0.001 | 0.007 | |
| head | 0.004 | 0.001 | 0.004 | |
| loessByCol | 0.000 | 0.001 | 0.001 | |
| maPlot | 0.035 | 0.005 | 0.077 | |
| makeCompressedMatrix | 0.002 | 0.003 | 0.005 | |
| maximizeInterpolant | 0.000 | 0.000 | 0.001 | |
| maximizeQuadratic | 0.001 | 0.000 | 0.001 | |
| meanvar | 0.105 | 0.005 | 0.160 | |
| mglm | 0.004 | 0.000 | 0.005 | |
| modelMatrixMeth | 0.003 | 0.001 | 0.007 | |
| movingAverageByCol | 0.001 | 0.000 | 0.001 | |
| nbinomDeviance | 0 | 0 | 0 | |
| nbinomUnitDeviance | 0 | 0 | 0 | |
| nearestReftoX | 0.001 | 0.001 | 0.000 | |
| nearestTSS | 6.243 | 0.223 | 9.138 | |
| normalizeBetweenArraysDGEList | 0.012 | 0.001 | 0.014 | |
| plotBCV | 0.305 | 0.014 | 0.442 | |
| plotExonUsage | 0.038 | 0.001 | 0.039 | |
| plotMDS.DGEList | 0.018 | 0.003 | 0.030 | |
| plotQLDisp | 0.454 | 0.023 | 0.624 | |
| plotSmear | 0.495 | 0.020 | 0.668 | |
| predFC | 0.115 | 0.002 | 0.179 | |
| q2qnbinom | 0.001 | 0.000 | 0.000 | |
| read10X | 0 | 0 | 0 | |
| readDGE | 0 | 0 | 0 | |
| roast.DGEGLM | 0.058 | 0.003 | 0.075 | |
| roast.DGEList | 0.096 | 0.004 | 0.139 | |
| romer.DGEGLM | 3.825 | 0.212 | 5.505 | |
| romer.DGEList | 3.471 | 0.190 | 4.855 | |
| rowsum | 0.003 | 0.000 | 0.004 | |
| sampleWeights | 0.050 | 0.002 | 0.056 | |
| scaleOffset | 0.001 | 0.001 | 0.000 | |
| spliceVariants | 0.013 | 0.000 | 0.014 | |
| splitIntoGroups | 0.001 | 0.000 | 0.002 | |
| subsetting | 0.012 | 0.001 | 0.013 | |
| sumTechReps | 0.000 | 0.000 | 0.001 | |
| systematicSubset | 0 | 0 | 0 | |
| thinCounts | 0.001 | 0.000 | 0.001 | |
| topTags | 0.017 | 0.003 | 0.024 | |
| validDGEList | 0.002 | 0.001 | 0.002 | |
| weightedCondLogLikDerDelta | 0.002 | 0.000 | 0.003 | |
| zscoreNBinom | 0.000 | 0.000 | 0.001 | |