まず「特殊相対性理論」からやけど、これは光の速さがどんな状況でも変わらんってことが基本やねん。 たとえば、電車が走っとる中で懐中電灯を前に向けて光らしても、外でじっとしてる人が見た光の速さも同じやねん。 普通やったら、電車の速さも加わるんちゃうかって思うやろ? でも光の速さだけは、どんなに速く動いても変わらんのや。 ほんで、この理論やと「時間」や「空間」も相対的に変わるっちゅうことになる。 速く動くほど時間が遅くなるんや。これを「時間の遅れ」っていうねん。 例えて言うたら、宇宙船でめっちゃ速く移動してる人は、地球におる人に比べてゆっくり年を取る、みたいな感じや。 次に「一般相対性理論」やけど、こっちは重力が関わってくるねん。 簡単に言うたら、重いもんが空間をぐにゃっと曲げるっちゅうことや。 たとえば、地球みたいなでっかいもんがあると、その周りの空間が曲がって、そこに他のもんが引っ張られるか

リンクWikipedia Boundary layer In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition (zero ve 14 リンクWikipedia 境界層 境界層(きょうかいそう、英: boundary layer)とは、ある粘性流れにおいて、粘性による影響を強く受ける層のことである。1904年、ドイツの物理学者ルートヴィヒ・プラントルによって

水はありふれた物質? 変わった物質? 岡山大学 異分野基礎科学研究所 松本 正和 (理科教室2019年7月号に寄稿) 水に満ちあふれた世界 宇宙から地球を眺めると、水と雲と氷(雪)がほぼ全表面を覆っています。生物は水の中で発生し進化してきました。私たちの生活も水に深く結びついていますし、科学・工業・食品・農業・医療などのさまざまな産業も、水とは切離せません。あまりに身近であるために、私たちは物質の性質を考えるときに、ともすれば水が普通だと考え、水を基準にして比較してしまいがちですが、ほかの物質と比較すると、水はいささか変わった性質を持っています。例えば、汗をかいたり水に氷をうかべて飲んでいる時に、水の異常性を実感する人はまずいないと思います。しかし、他の物質と比べて水の蒸発潜熱は非常に大きいし、融ける時に体積が縮む物質は非常に稀です。水に隠された変わった性質はどのくらいあるのかは、水だけを
小惑星「カモオアレワ」は、月のように地球の周囲を公転しているように見えることから、準衛星と呼ばれています。このカモオアレワは月の破片である可能性が示唆されていましたが、「実際に月の破片が準衛星の軌道を得ることはあり得る」ということがシミュレーションによって判明しました。 Lunar ejecta origin of near-Earth asteroid Kamo’oalewa is compatible with rare orbital pathways | Communications Earth & Environment https://www.nature.com/articles/s43247-023-01031-w Researchers probe how a piece of the moon became a near-Earth asteroid | Univers

[Maker Faire Tokyo2022]注目出展者紹介 #1 ― 世界初のアマチュアによる「自作MRI」を8年かけて作り上げた八代さん MRIといえば、専用の検査室が必要になるほどの巨大装置。電動ベッドに横たわり、でっかいコイルが内蔵されているとおぼしき穴に吸い込まれ、グォンギューンなんて機械音を聞かされて検査をされる、あれ。旧型でも5,000万~1億、最新型なら5億~10億はするという、超高価な医療機械だ。 われわれが「Maker Faire Tokyo2022」の出展者リストに「自作MRI」の文字を見た時、「えっ? MRIを?」となったのも、無理はない。「あれは自作できるものなのか!?」――みなさんもきっとそうお思いになるでしょう。 MRI(Magnetic Resonance Imaging)は、磁性を持つ原子核の共鳴現象を利用して画像化する「核磁気共鳴画像法」、またはその
![Make: Japan | [Maker Faire Tokyo 2022]注目出展者紹介 #1 ― 世界初のアマチュアによる「自作MRI」を8年かけて作り上げた八代さん](/image.pl?url=https%3a%2f%2fcdn-ak-scissors.b.st-hatena.com%2fimage%2fsquare%2f4dfcd5b7a98f467f53bbad199a1b9d21a4337ad1%2fheight%3d288%3bversion%3d1%3bwidth%3d512%2fhttps%253A%252F%252Fmakezine.jp%252Fwp-content%252Fuploads%252F2022%252F07%252Fphoto_1.jpg&f=jpg&w=240)
国立科学博物館(東京) 国立民族学博物館(大阪) 大塚国際美術館(徳島) 国内でこのレベルの展示量がある博物館・美術館は他に何がありますか

7日に都内で開かれた記者会見。 国立科学博物館の篠田謙一館長は、 ▼光熱費の高騰などを受けた支出の増加や、 ▼新型コロナウイルスの感染拡大に伴う入場料収入の減少などで、 財政的にひっ迫していると説明しました。 中でも1年を通して温度や湿度を一定に保つ必要がある収蔵庫は節電が難しく、今年度の光熱費は3億8000万円ほどと、2年前と比べて2億円近く増える見込みとなり、標本などの収集や管理が危機的な状況にあると強調しました。 この状況を改善するため、クラウドファンディングで1億円の資金を募ることを決めたということです。 篠田館長は「今回は過去最大の挑戦になります。科博が持つ膨大なコレクションを守り、国内に点在する貴重なコレクションの収集活動の継続に対する私たちの思いにご支援をお願いします」と話していました。 7日午前9時からの記者会見で発表された国立科学博物館のクラウドファンディング。 発表直後

(CNN) 世界でこのまま温室効果ガスの排出が続けば、大西洋の海水が表層で北上し、深層で南下する南北循環(AMOC)は今世紀半ば、早ければ2025年にも停止する恐れがあるとの研究結果が報告された。 デンマーク・コペンハーゲン大学の物理気候学者、ピーター・ディトレフセン教授らが25日、英科学誌ネイチャーに発表した。 AMOCは地球規模のベルトコンベアーのように、熱帯の暖かい海水と塩分を北大西洋に運ぶ。北大西洋で冷えた海水は深層に沈み込み、再び南下する。 この循環は世界の気象パターンを維持する重要な役割を果たしているため、停止すれば欧米の極端な異常気象や海面上昇、熱帯の季節風の変化など、各地で重大な影響が出る事態が予想される。 科学者らは何年も前から、気候危機が加速するにつれてAMOCが不安定になり、流れの強さを左右する水温と塩分濃度のバランスが崩れる恐れがあると指摘してきた。 温暖化で氷が解

どひさん @soilchemooon ここは50年以上同じ施肥管理し続けてる水田です 数年程度の無リン施肥では、今回の画像のような無リン症状は普通みられません 兵庫県さんが同様の話題に関して動画上げてるので、そちらもどうぞ。 R3-002-イネに窒素・リン酸・カリの各成分を長期間与えないとどうなるか youtu.be/5WFIcw4arF02023-07-06 22:55:46 どひさん @soilchemooon Q.50年以上、無肥料(−NPK)で育てたらイネの生育はどうなるんですか? A.写真のようになります。今の見た目は無リン区みたいですが、収量は無リン区が三要素区の6割程度になるのに対し、無肥料区では2〜3割くらいまで落ち込みます 無リン区で収量がこの程度まで抑えられるのは田んぼだからですね pic.twitter.com/FU1fhHHCHV2023-07-07 14:44

土星の衛星の中で6番目に大きいエンケラドスのイラスト。表面から水蒸気や氷が噴出している。(ILLUSTRATION BY TOBIAS ROETSCH, FUTURE PUBLISHING/GETTY IMAGES) 生命に必須の元素の中で最も希少なリンが、地球以外の天体の海から初めて見つかった。土星の衛星エンケラドスの表面は氷に覆われているが、この氷の割れ目から噴出した氷の粒を土星探査機カッシーニで分析したところ、ついにリンを検出したのだ。論文は2023年6月14日付けで学術誌「ネイチャー」に発表された。 リンは地球の土壌を肥沃にする重要な元素だが、研究チームは、エンケラドスの内部海(氷でできた地殻の下にある液体の海)には、地球の海の100倍以上の濃度でリンが存在しているかもしれないと考えている。今回の発見は、木星の4番目に大きい衛星エウロパや土星の最大の衛星タイタンなど、ほかの氷の天体
西新井駅切符売り場でアルミ缶が爆発して女性が怪我をしたという事故。やらかした中国人が逮捕されたが、実はこの事故は度々起こっている。 https://www3.nhk.or.jp/shutoken-news/20230509/1000092245.html 有名なのは数年前に地下鉄日本橋駅で乗客の荷物が破裂してガスが発生、機動隊や消防が出動して駅ごと閉鎖、電車は不通になった事件があった。 今次の事故でも爆発なので警察は念の為にG事案(広域ゲリラ事件)として捜査を行うが、コーヒー缶爆発と来たら業務用洗剤ちょろまかしによる爆発に決まっている。 やってる事は馬鹿であり、よくわかってない馬鹿が扱えないような仕組みになってるのだが、ルーズな会社が多くてこの手の事件が起きてしまう。しかも時限爆弾みたいに当初は大丈夫なのに時間が経ってから事故になるという仕組みがあるのだ。 だからその辺をちょっと解説するよ

ジュエリーとしておなじみのダイヤモンドが、次世代の半導体素材として注目されています。その理由は、「桁違いの大電力を制御できる可能性」を秘めているから。 社会において大きな電力を制御する必要性は、年々高まっています。電気自動車の普及が進み、電気で動く空飛ぶクルマや飛行機も登場。さらに電力需要が増え、変電所が扱う電力も大きくなると考えられています。 そこで、実用化が期待されているのが、現在主流のシリコンに比べて5万倍(理論値)の電力を制御する力があるダイヤモンドの半導体なのです。省エネの重要性も高まる今、電力損失を大幅に軽減できるダイヤモンド半導体には世界から熱い視線が向けられています。 しかし、その開発の道のりは困難の連続。開発を前進させたのは、研究者同士の意外な出会いでした。実現すれば、その活用の場は、大容量無線通信から医療機器、宇宙空間にまで広がります。従来の半導体ではカバーできない領域

DNAの末端にあるテロメアは細胞分裂のたびに短くなる特性から、ある種の寿命タイマーであると考えられていました。 しかし米国のノースカロライナ大学(UNC)で行われた研究により、染色体の先端にあるテロメアには、強力な活性を持つ2つの小さなタンパク質を生成可能であることが示されました。 この2つの小さなタンパク質は、一部のがん細胞やテロメア関連の遺伝疾患をもつ患者の細胞内に多く存在することが示唆されており、細胞の不調に応じて生産されるシグナル伝達の役割を果たしていると考えられます。 研究者たちは、テロメアが2つのシグナル伝達タンパク質をコードしている場合、がんや老化の仕組みや、細胞同士がどのように通信しているかについての、既存の常識がくつがえる可能性があると述べています。 しかし単調な繰り返し構造から成るテロメア(開始コドンを持たない)から、いったいどんな方法でタンパク質が作られたのでしょうか

量子力学。それは物質の基本の姿、すなわち、この世界の基本の姿を解き明かそうとする理論だ。しかし、そこから導かれるさまざまな結論は、どれもわれわれの直観にあまりにも反している。 そんな量子力学をどう解釈するかをめぐっては、2つの代表的な方法がある。1つは、ニールス・ボーア(1885-1962)を中心に考えられた「コペンハーゲン解釈」。もう1つは、ヒュー・エベレット(1930-1982)が提唱した「多世界解釈」だ。現在、コペンハーゲン解釈が標準的な理論とされているが、それに異を唱える物理学者たちが主張しているのが多世界解釈である。しかしそれは、「この世界は無数に存在する」というSFとしか思えない世界像を主張する、一見、まともとは思えない解釈である。 多世界解釈では、なぜそんな世界が「必然」となるのだろうか? その答えは、じつはごく自然なロジックの積み重ねで導くことができるのだ。 その前に今回は

人は一日に体内からどれくらいの水分を失うのか、正確に予測できる計算式を日本の研究者らが初めて導き出しました。 (計算式は記事の最後に詳しく掲載しています) 成人は一日で体内の水分のおよそ10%を失いますが、式を使うと年齢や体重、気候など条件ごとに失う量を算出でき、災害時に地域で必要な飲料水の量を割り出すことなどにも使えるとしています。 計算式は、国立研究開発法人医薬基盤・健康・栄養研究所の山田陽介室長らがアメリカやイギリス、オランダなどの研究者と共同で、科学雑誌「サイエンス」に発表しました。 グループでは、水分中にわずかに含まれる質量が大きい水の動きを解析する手法で、欧米やアジアなど23か国のおよそ5600人について、体内での水の出はいりの量を割り出しました。 その結果、一日に失われる水の量は成人では ▽男性で20歳から35歳だと平均4.2リットル、 ▽女性では30歳から60歳で3.3リッ

リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く