Winnyの金子勇さんが考案された機械学習アルゴリズムED法を再現して実装した人がいていま話題になっている。 『Winny』の金子勇さんの失われたED法を求めて…いたら見つかりました https://qiita.com/kanekanekaneko/items/901ee2837401750dfdad いまから書くことは私の記憶頼りなので間違ってたらコメント欄で教えて欲しい。 1998年ごろだと思うのだが、私はWinnyの金子勇さんのホームページの熱心な読者だった。(ページも全部保存してたので私のHDDを漁れば出てくると思うが、すぐには出せない。) Winnyのβ版が発表されたのが2002年なのでそれよりはずいぶん前である。 当時、金子さんはNekoFightという3D格闘ゲームを公開されていた。そのゲームには、自動的に対戦から学習するAIが搭載されていた。 当時の金子さんのホームページの
はじめにStable DiffusionだとかChatGPT、LLMみたいな「大規模モデル」って考え方が機械学習業界から出て、スケーリング則に基づいてまだまだ精度が上がるとされている昨今。 (スケーリング則はどうのこうの諸説あるが)さておき、「マルチモーダルに」「あらゆるデータを学習した」「大規模なモデル」が今後数年リードしていく事は間違いないと思う。 そんな中で、我々機械学習エンジニアやデータサイエンティスト、アナリスト、データエンジニア、MLOpsエンジニアみたいな、いわゆるAI屋として働いている人たち、皆が所属するAI組織ってどうなっていくのかな、という話を書いてみる。 データの民主化AIの民主化とデータの民主化AI業界では「AIの民主化」というワードがある。 便宜的にAIというワードが広く使われるようになった辺りで出てきたワードで、OSSやプラットフォーム、ハードの発展によって「A

高精度な画像を生成できることで話題となっている「Stable Diffusion」が、どのように入力されたテキスト(プロンプト)からイラストを生成しているのかについて、機械学習関連のトピックについての解説動画などを投稿しているジェイ・アラマー氏が解説しています。 The Illustrated Stable Diffusion – Jay Alammar – Visualizingmachine learning one concept at a time. https://jalammar.github.io/illustrated-stable-diffusion/ アラマー氏は、テキストから印象的な画像を生成するAIの登場が、人間がアートを作成する方法が変わることを示していると主張。Stable Diffusionのリリースにより、比較的安いリソースで使用で誰もが高性能なモデルを使

NovelAI @novelaiofficial @NilaierMusic Since we are training on Danbooru,it also learns character names and their visuals. You can prompt for "masterpiece portrait of smiling rem, re zero, caustics,textile shading, high resolution illustration" and get this: pic.twitter.com/2wqDmAxCJa2022-09-25 10:20:30

画像生成AIのStable Diffusionは、ノイズを除去することで画像を生成する「潜在拡散モデル」で、オープンソースで開発されて2022年8月に一般公開されたため、学習用のデータセットを変えることで特定の画像を生成するのに特化したフォークモデルが多数存在します。そんなStable Diffusionから派生して生まれた特化型モデルとその特徴や生成例をまとめてみました。 Stable Diffusion Models https://rentry.org/sdmodels 実際に複数のモデルとシード値で、同一のプロンプト・ステップ数・CFGスケールで画像を生成した結果をまとめてみました。 モデルは左からStable Diffusion v1.4、Waifu-Diffusion v1.2、Trinart Stable Diffusion、Hentai Diffusion、Zack3D_K

概要DreamBoothとは追加学習することで、AI(StableDiffusion)で特定のキャラや物を描くためのモデル(データ)作るツールです。 例えば、ドラゴンクエスト10オンラインというゲームのアンルシアというキャラがいます。 ドラゴンクエスト10のアンルシア 公式サイトより引用 https://hiroba.dqx.jp/sc/election/queen2021/vote/confirm/1/nologinこのキャラの画像を18枚ほどAIに読み込ませ、追加学習し、AIに描かせた絵が以下の絵になります。 これ見ると、単なる髪型や顔が似ているレベルではなく、服の模様レベルまで再現できている事がわかります。 今までStableDiffusionの欠点として、同じキャラを安定して描くのが苦手というのがありましたが、DreamBoothを使うことで克服することが出来ます。 これにより、A

模範的工作員同志/赤野工作 @KgPravda もうちょっと、本当、信じられん……。播磨灘AI、なんかおかしいなと思ったら、ゲームを確定でバグらせる挙動発見して、相手力士をフリーズさせるパターンを起こしてタイムアップまで生き延びてやがる……。2022-08-11 23:40:27 模範的工作員同志/赤野工作 @KgPravda 【AIああ播磨灘進捗】 五日目。25000000回プレイ。信じられない不正が発覚。相手がフリーズするバグを確定で発現させられるパターンを編み出し、バグを利用してタイムアップまで生き残っていた。動画を見ても何がバグの原因になっているか分からないため禁止も出来ない。再現率100%。品格以前の問題。 pic.twitter.com/pYMkgsdvQZ2022-08-11 23:52:27

開発した装置を手にする菊地佑太さん(左)と石井聖名さん(中央)、佐藤汰樹さん=2022年6月3日、盛岡市 歩き方で認知症になるかどうかが分かる――。そんな装置を一関工業高専(岩手県一関市)の学生3人が開発し、企業評価額を競う全国大会で最優秀賞を受賞した。つけられた評価額は過去最高の10億円で、3人は「早く起業したい」と意気込んでいる。 【写真】インソール型の足圧センサーを着けた靴。歩行時の加速度などから認知症の兆候をつかむ 大会は、人工知能(AI)が自ら学習する「ディープラーニング(深層学習)」の技術を利用して開発した装置を、技術力やビジネスモデルの面で評価し、つけられた額で競う。 4月末に東京で開かれ、約50チームが参加。一関工業高専からは、システム創造工学専攻1年で、生態工学を学ぶ石井聖名さん(21)、深層学習について研究する菊地佑太さん(21)と佐藤汰樹さん(20)がチームを組んだ。

新人: 「本日データサイエンス部に配属になりました森本です!」 先輩: 「お、君が新人の森本さんか。僕が上司の馬庄だ。よろしく!」 新人: 「よろしくお願いします!」 先輩: 「さっそくだけど、練習として簡単なアプリを作ってみようか」 先輩: 「森本くんはPython なら書けるかな?」 新人: 「はい!大学の研究でPython 書いてました!PyTorch でモデル作成もできます!」 先輩: 「ほう、流石だね」 新人: 😊 先輩: 「じゃ、君には今から 3 時間で機械学習 Web アプリを作ってもらうよ」 先輩: 「題材はそうだなぁ、写真に写ってる顔を絵文字で隠すアプリにしよう」 先輩: 「あ、デプロイは不要。ローカルで動けばいいからね。顔認識と画像処理でいけるよね?」 新人: 😐 新人: (えぇぇぇぇぇぇぇ。3 時間?厳しすぎる...) 新人: (まずモデルどうしよう。てかもら

化学者のつぶやき機械学習は、論文の流行をとらえているだけかもしれない:鈴木ー宮浦カップリングでのケーススタディ2022/4/18 化学者のつぶやき, 論文 JACS,機械学習, 鈴木-宮浦クロスカップリング コメント: 0 投稿者: Zeolinite機械学習においては優れたモデルを作り、反応生成物や収率の予測に成功した結果を報告するのが通常ですが、機械学習を使ってうまくいかなかったことを報告した論文がJACSに発表されたので、詳細を見ていきます。 背景機械学習は、多くの分野において活用され顕著な成功をもたらしてきた技術ですが、高い精度の予測には明確な規則と高い品質のデータセットが必要で、それらがない場合には機械学習による予測は、影響力がなくなってしまいます。これは化学でも言えることで、データセットに機械的に明確な反応例が十分含まれている場合には、精度よく反応性を予測することがで
「なぜ見抜けなかったのか」 画像の選択を迫られるたびに俺は自問する。 進化の筋道を正しく予測するのは難しい。 遺伝的アルゴリズムの活用 2021年から、新たに習慣となった行為はあるだろうか。俺はある。PCの前に座り、二つの画像のうち、どっちの方がエッチかを選ぶ。これがモーニングルーティンとなっている。もちろんこれの話だ。 遺伝的アルゴリズムで最高にエッチな画像を作ろう! これまで何度も話題になっていたし、直近でも関連ツイートがバズっていたので、本記事を読む人の大半は知っているだろう。名前の通り、遺伝的アルゴリズムでエッチな画像を作るシステムである。人が画像を選択することで、よりエッチな画像が生き残り、高みへと一歩近づく。最初はノイズのようなモザイク画だったが、10,000世代を超えた現在では「女性の裸体」と認識できるものに仕上がっている。 0世代と10,000世代 現状について「最高にエッ

またお得なAmazon Monitronスターターキットもご用意されています。 (取り付けキット、5 個のセンサー、ゲートウェイのセット) 運用費用Amazon Monitronはセンサー1つあたり年間50USDのランニングコストがかかります。 費用例 ■要件 5つのモーターを監視する必要がある。 上記を実現するためにAmazon Monitronスターターキットを購入し、 モーターごとに1つのセンサーを取り付け3年間使用した。 ■試算結果 スターターキット購入費用(715USD)+ センサー年間利用費用×5(250USD)×3年分 = 1465USD(3年間利用費用) 注意事項 ■Amazon Monitron 利用可能な地域について 米国、英国、およびEUのみで利用可能です。(2021/04/16時点) ■必要なモバイル端末についてAndroid8.0以降のスマートフォンが必要で

おわり 二つの画像のうち、どっちの方がエッチかを選んでください。 世代交代を経るごとに、だんだんとエッチな画像が表示されるようになるはずです。 Choose the lewder one, and you can make them more lewd. You will win when theAdSense on this site is stopped byGoogle because of "Sexually explicit content". ENGLISH よりエッチな画像を作るために、 ぜひ色んな人に広めてください。 ツイート ・展覧会ページでこれまでの画像を公開しています。 詳しい説明 スポンサーリンク みんなの好みを学習させて、「遺伝的アルゴリズム」によってエッチな画像を自動で作るためのシステムです。 遺伝的アルゴリズムとは、あるデータを目標に近づけるために使われる

リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く