この章では相関分析と回帰分析の計算原理と使い分け、そして間違いやすい相関分析と回帰分析、さらに一致係数と各種手法の相互関係について解説します。 5.1 相関係数と回帰直線 あるデータと別のデータの間の関連性を分析する手法には相関係数(correlation coefficient)を中心にした相関分析と、回帰直線(regressionline)を中心にした回帰分析があります。 これらの手法は広く利用されているわりに――あるいは利用されているからこそ――しばしば間違って用いられます。 誤用の原因は値の計算原理と深く関わっているので、原理をよく理解して正しく利用するようにしましょう。 (1) 相関分析(correlation analysis) 相関係数は2種類のデータについて、一方の値が大きい時に他方の値も大きい(または小さい)かどうかを現象論的に要約する指標です。 そのため因果関係ではな
今日は初心者向け記事です。 はじめに ある範囲の年齢の小学生32人を無作為に選び、算数のテストを受けてもらい、さらにその身長を測定しました。 身長に対する算数の点数のグラフは次のようになりました。 なんと、身長の高い子供の方が、算数の点数が高いという結果になりました! 身長が算数の能力に関係しているなんて、すごい発見です! しかしながら、結論から言うと、この結果は間違っています。 なぜなら、抽出したのは「ある範囲の年齢の小学生」であり、年齢の高い子も低い子も含まれているからです。 年齢が高いほど算数能力は高くなり、年齢が高いほど身長も高くなることは容易に推測できます。 この関係を図で表すと次のようになります。 つまり、年齢と算数能力に相関があり、年齢と身長にも相関があるため、身長と算数能力にも見かけ上の相関が見えているのです。 このような相関を擬似相関と言います。 統計解析では、このような

Why this works Data dredging: I have 25,237 variables in mydatabase. I compare all these variables against each other to find ones that randomly match up. That's 636,906,169 correlation calculations! This is called “data dredging.”Note Fun fact: the chart used on thewikipedia page to demonstrate data dredging is also from me. I've been being naughty with data since 2014. Instead of starting with

1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く