Independent Component Analysis (ICA) is a statisticaltechnique for decomposing a complex dataset into independent sub-parts. Here, we demonstrate ICA for solving theBlind Source Separation (BSS) problem. We are given twolinear mixtures of two source signals which we know to be independent of each other, i.e.observing the value of one signal does not give any information about the value of the
Aalto.fi sci.aalto.fi cs.aalto.fi Independent Component Analysis (ICA) andBlind Source Separation (BSS) The FastICA package for MATLAB The FastICA package is a free (GPL) MATLAB program that implements the fast fixed-point algorithm for independent component analysis and projection pursuit.It features an easy-to-use graphical user interface, and a computationally powerful algorithm. Download sof
主成分分析(PCA)とは、特徴量の次元がバカでかくなりすぎた場合に行われる次元収縮の手法である。 参考: http://www-pse.cheme.kyoto-u.ac.jp/~kano/document/text-PCA.pdf http://aoki2.si.gunma-u.ac.jp/lecture/PCA/index.html 主成分分析は広く知られている手法で、統計学で習った人も多いかもしれない。 パターン認識の分野では、この主成分分析と組み合わせて、独立成分分析(ICA)がしばしば使われる。 独立成分分析と主成分分析の処理は似ている。だが、主成分分析は(主成分の)軸は直交しなければいけないのに対して、独立成分分析では軸は直交しなくてもよいという点が違う。独立成分分析では、データ分布の独立性を見るのだ。 独立成分分析は fastICA ( http://www.cis
英語版記事を日本語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Independent component analysis|…}}をノートに追加することもできます。Wikipedia:翻訳のガイドラインに、より詳細な
1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く