ivyとはなにか機械学習の統一を目指すフレームワークです。現在、JAX, TensorFlow,PyTorch, Numpy をサポートしています。JAXはNumpy互換なので、実質的に Tensorflow&Pytorch の共通APIのフレームワーク(かなり乱暴なまとめ方)です。 研究のペーパーでよく見るのはPytorchですが、産業ではTensorflowがよく使われるようです。 下の表にもありますが、開発者の設計思想を読むと「書き換えの手間」が想像以上に労力を必要とする文面が多く見受けられます。 余談で手元にTensorflowとPytorchの本が2冊あるのですが、実装に互換性があればそういう悩みが減って深層学習の学習が身近になるかもしれないですね。 特に初学者は「最初にどの山に登るのがいいのか」で迷うと思うので。 ivy登場以前から、学習済みモデルを異なるプラットフォームで

SVMを学びたい人にとっては「サポートベクターマシン入門」通称「赤本」は最適な入門書であるといえる。理論から実践までバランスよく解説されており、本書を読むだけでSVMの実装が可能になる。 しかし本書はSF小説を彷彿とさせる独特な翻訳の文体のため機械学習に不慣れな読者にとっては読みこなすのは苦しい戦いとなる。本来なら原書をオススメしたいところだが、そうはいっても英語はちょっとという人も多いはず。 そこで本記事では赤本のオススメな読み方を紹介してみる。 1.「わかパタ」で準備運動をしよう 泳ぎのうまい人でもいきなり水に飛び込むのは危険。まずは準備運動をして体を温める。これには「わかりやすいパターン認識」がオススメ。とりあえず2章まで、余裕があれば3章まで読んでおけば充分。 2.赤本を枕元において一晩寝よう さて準備運動が済んだら早速赤本にトライ!したいところだが赤本の放つ瘴気で心を蝕まれないよ
(Image by Pixabay) 最近になって、こんな素晴らしい資料が公開されていたことを知りました。 この資料自体は著者のMoe Uchiikeさんが東大での講義に用いられたものだとのことですが、その内容の汎用性の高さから「これは全ての機械学習や統計学を実務で用いる人々が必ず読むべきドキュメント」と言っても過言ではないと思われます。 正直言ってこの資料の完成度が高過ぎるのでこんなところで僕がああだこうだ論じるまでもないと思うので、内容の詳細については皆さんご自身でまずは上記リンクから精読していただければと思います。その上で、今回の記事では「機械学習や統計学を『社会実装』する」ということがどういうことなのかについて、この資料を下敷きとした上でさらに僕自身の経験や見聞を加えて考察したことを綴ってみます。機械学習や統計学と、社会との「ギャップ」機械学習や統計学を、社会に「馴染ませる」

勾配降下法を用いて学習させたモデルを用いた分類を行う場合に、任意の分類結果が得られるような入力を意図的に作成することが可能です。これは、Kumar et al. による攻撃分類では、perturbation attacks や adversarial examples in the physicaldomain に該当します。 攻撃対象のシステムに対して、攻撃者がデータの入力や出力の確認などを行うことができる余地が大きいほど、攻撃が成功する可能性は大きくなります。 また、学習プロセスに関する情報(教師データ、学習結果、学習モデル、テストデータなど)があれば、攻撃はより容易に行えるようになります。 現状では、数秒で攻撃できるものから何週間も必要になるものまで様々な事例が知られています。本件はアルゴリズムの脆弱性であり、攻撃対象となるシステムにおいて機械学習の仕組みがどのように使われている
動機 TensorFlowの登場をきっかけに機械学習によるアイドル顔識別 という取り組みをしていて、3年以上かけてコツコツとアイドルの自撮りを収集してラベルをつけてデータセットを作ってきたけど、アイドルヲタクはもう辞めてしまって 現場にも全然行かなくなり、卒業・脱退の情報を追いながらラベルを更新していく作業を続ける情熱はすっかり薄れてしまった。 もうアイドル顔識別プロジェクトは終了にしよう、と思った。 しかし折角今まで集めたデータを捨ててしまうのは勿体無い。せめて最後に何か活用できないものか。 と考えて、「画像生成」に再び取り組んでみることにした。 過去に試したことはあったけど、それほど上手くはいっていない。 TensorFlowによるDCGANでアイドルの顔画像生成 TensorFlowによるDCGANでアイドルの顔画像生成 その後の実験など この記事を書いたのが2016年。 この後

○:良好 ▲:実施しているが、表示不能 △:一部可能 ×:実装されていない or 良好ではない 4.2.Google/AutoML Tables 統計・機械学習に詳しくない方をターゲットにしていると感じました。 統計情報の表示画面・モデルの評価画面ともに説明が丁寧で、知識が少なくともある程度の結果を出せるように作られていると感じました。 一方、データの読み込みや処理などに癖が強いためこのサービスを含めたgoogle cloud platformへの知識は必要になりそうです 良い点 統計情報の表示画面が非常に優秀 ヘルプが充実しているため、モデルの評価が容易 悪い点 データ形式の制約が多い(行数1000行以上、分類ならクラスごとに20以上必要など) モデルの内部構造(採用した手法)が分からない 分析ページのサンプル画像 データの種類を自動判別してくれる他、欠損や固有値、各種統計情報を自動計

Welcome¶ Theano is aPython library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Theano features: tight integration with NumPy – Use numpy.ndarray in Theano-compiled functions. transparent use of aGPU – Perform data-intensive computations much faster than on aCPU. efficient symbolic differentiation – Theano does your d
機械学習のエッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning) 作者: 加藤公一出版社/メーカー: SBクリエイティブ発売日: 2018/09/21メディア: 単行本この商品を含むブログを見る発売されてからだいぶ経ちますが、構想段階の頃より著者の「はむかず」さんこと加藤公一さんからお話を伺っていて注目していたこちらの一冊をようやく一通り読みましたので、サクッと書評めいた何かを書いてみようかと思います。 各章の概要 言うまでもなく実際の内容は皆様ご自身でお読みいただきたいのですが、これまでの書評記事同様に概要を簡単にまとめておきます。 第01章 学習を始める前にPython環境やAnacondaのインストールについての説明もなされているんですが、重要なのは後述する「本書は何を含まないか」という節。ここに本書の狙いの全てが書かれていると言って

(Fig. 1 from Rumelhart, Hinton & Williams, Nature, 1986) これはちょっとした小ネタです。僕自身はニューラルネットワーク (NeuralNetwork, NN)の学術的専門家でもなければ況してやNNの研究史家でもないので、たかだか僕自身がかつて脳の研究者だった頃に把握していた事由に基づいて、極めていい加減な私見を書いているに過ぎないことを予めお断りしておきます。よって、この辺の事情に詳しい方いらっしゃいましたら、後学のためにも是非ご遠慮なくツッコミを入れて下さると有難いですm(_ _)m 先日のことですが、@tmaeharaさんがこんなことを呟いておられました。 オリジナル論文 https://t.co/kXfu8jIat3 これです.本当にただチェインルールで微分して勾配法しているだけにしか見えない…….— ™ (@tmaehara

【重要なお知らせ】 α版として公開しておりました 授業AIアシスタント「Josyu(ジョシュ)」は、2021年6月7日を持ちまして公開を終了しました。これまで、Josyu(ジョシュ)をご体験いただきまして誠にありがとうございました。 お問い合わせはこちら 学校の授業では毎日「声」という「データ」が発せられています。その「声」を収集して、教材にすれば、これからの授業が変わるかもしれない。 「声」から得られる「データ」は、リアルタイムに人工知能で解析され、ある時は、子供たちと授業の振り返りをしたり、ある時は知らない街の先生からノウハウをもらい、またある時は、世界と繋がるきっかけになるかもしれない。 今まで見過ごしていたものを残していくことで、それがみんなの財産となる。そんな思いからジョシュは生まれました。

序言 キーボードについて、思うことを書きつらねてみる。 最初に自分が好きなキーボードの特徴について書いて、その後キー割り当てについて書き、最後にこんなの作りたいなぁという妄想を書いてみます。考えがもう少しまとまったらまたこの記事は更新すると思います。 一般的なキーボードに対する"想い"については、ゆかりさん(@eucalyn_)のブログが記事が非常に分かりやすいと思います。エネルギーを感じる非常に楽しい記事ですね。 eucalyn.hatenadiary.jp 自分の好きなキーボードについて 自分の好きなキーボードについての特徴や方針について羅列します。 左右分離 一体型よりも姿勢が楽です。 アルミなどの頑強なフレーム アクリルプレートなどでサンドイッチされたキーボードは個人的に打鍵感に頑強さが足りないので、重めのずっしりとしたフレームが好きです。人によっては鉄板などをキーボードに仕込んで

リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く