LLVMやSwiftを作ったChris LattnerがCEOをやっている会社が、Pythonの使用感とC言語並の性能を併せ持つ言語としてMojoをアナウンスした。 まだ手元で試せる状態でリリースされてはいないが、最大35000倍Pythonより速いという。 Mojo🔥 combines theusability ofPython with the performance of C, unlocking unparalleled programmability ofAI hardware and extensibility ofAI models. Also,it's up to 35000x faster thanPython 🤯 and … deploys 🏎 pic.twitter.com/tjT09U4F80— Modular (@Modular_AI) May

先日プログラミング言語 Mojo と呼ばれるもののアナウンスメントがあった。この言語のデザインが私のスイートスポットに刺さる感じだったので、今のうちから注目している。使いたいなというか、将来使うことになりそうな言語なので簡単に何ができそうかを調査してまとめておきたい。 ウリとしては「C 並のパフォーマンスが出るPython」といったところだろうか。 k0kubun さんからコメントを裏でもらって、これって要するに並列化とかSIMD 化とか入れたら35,000倍のパフォーマンスが出るようだけど、これはPython の部分とは呼べなくて、素のPython 動かして本当にそういえるかは怪しくない?とのことで、判断保留します 🙇🏻♀️ k0kubun さんありがとう 言語のデザインとしては、AI 開発に向けたプログラミングを提供できるよう設計されていると感じる。表側はPython
一歩先行くハイパフォーマンスなビジネスパーソンからの圧倒的な支持を獲得し、自作RPA本の草分けとして大ヒットしたベストセラー書の改訂版。劇的な「業務効率化」「コスト削減」「生産性向上」を達成するには、単純な繰り返し作業の自動化は必須です。本書ではWordやExcel、PDF文書の一括処理、Webサイトからのダウンロード、メールやSMSの送受信、画像処理、GUI操作といった日常業務でよく直面する面倒で退屈な作業を、Pythonと豊富なモジュールを使って自動化します。今回の改訂では、GmailやGoogleスプレッドシートの操作、Pythonと各種モジュールの最新版への対応、演習等を増補しています。日本語版では、PyInstallerによるEXEファイルの作成方法を巻末付録として収録しました。 関連ファイル サンプルコード 正誤表 書籍発行後に気づいた誤植や更新された情報を掲載しています。お手

五島氏の自己紹介尾藤正人(以下、尾藤):メンターの尾藤です。僕がメンターをさせてもらった、五島くんのカラスを追い返すシステムの発表をお願いしたいと思います。五島くん、どうぞ。 五島舜太郎氏(以下、五島):はい。みなさんこんにちは。五島舜太郎です。僕は今回「scairecrow」という、カラスからゴミを守るシステムの開発を行いました。 (会場拍手) ありがとうございます。scarecrowとは英語でカカシを意味する単語ですが、今回は「AIの機能を内蔵したカカシ」という意味を込めて名付けました。 では自己紹介です。年齢は13歳、中学1年生です。趣味はLEGOや電子工作、『Minecraft』などをすることです。電子工作ではArduinoやmicro:bitなどを使っています。『Minecraft』ではJavaでModの製作をしています。プロジェクトを進めようと思った経緯五島:では今回、このプ


新人: 「本日データサイエンス部に配属になりました森本です!」 先輩: 「お、君が新人の森本さんか。僕が上司の馬庄だ。よろしく!」 新人: 「よろしくお願いします!」 先輩: 「さっそくだけど、練習として簡単なアプリを作ってみようか」 先輩: 「森本くんはPython なら書けるかな?」 新人: 「はい!大学の研究でPython 書いてました!PyTorch でモデル作成もできます!」 先輩: 「ほう、流石だね」 新人: 😊 先輩: 「じゃ、君には今から 3 時間で機械学習 Web アプリを作ってもらうよ」 先輩: 「題材はそうだなぁ、写真に写ってる顔を絵文字で隠すアプリにしよう」 先輩: 「あ、デプロイは不要。ローカルで動けばいいからね。顔認識と画像処理でいけるよね?」 新人: 😐 新人: (えぇぇぇぇぇぇぇ。3 時間?厳しすぎる...) 新人: (まずモデルどうしよう。てかもら

Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 社内向けに公開している記事「統計・機械学習の理論を学ぶ手順」の一部を公開します。中学数学がわからない状態からスタートして理論に触れるにはどう進めばいいのかを簡潔に書きました。僕が一緒に仕事をしやすい人を作るためのものなので、異論は多くあると思いますがあくまでも一例ですし、社員に強制するものではありません。あと項目の順番は説明のため便宜上こうなっているだけで、必ずしも上から下へ進めというわけでもありません。 (追記)これもあるといいのではないかというお声のあった書籍をいくつか追加しました。数学 残念ながら、統計モデルを正しく用いようと思


東大の2024年版が公開されています。本稿は、2021年5月26日に公開した記事を「2024年11月14日の最新情報」に合わせて改訂したものです。『初心者向けTellus学習コース』はリンク切れのため削除しました。 プログラミング言語Pythonを習得したい場合、まずは教科書型のコンテンツなどで一通りの基礎知識を学ぶ必要があるだろう。そういった目的に合うコンテンツは、書籍を含めてさまざまなものがある。本稿ではその中でも、東京大学もしくは京都大学の授業で使われており信頼性が高い電子書籍、しかも無料で入手可能なものを紹介する。東大/京大の「Python教科書」電子書籍 東京大学『Pythonプログラミング入門』

東京大学がちょっとびっくりするくらいの超良質な教材を無料公開していたので、まとめましたPython入門講座東大のPython入門が無料公開されています。scikit-learnといった機械学習関連についても説明されています。ホントいいですPythonプログラミング入門 東京大学 数理・情報教育研究センター: utokyo-ipp.github.io東大のPython本も非常にオススメですPythonによるプログラミング入門 東京大学教養学部テキスト: アルゴリズムと情報科学の基礎を学ぶ https://amzn.to/2oSw4wsPythonプログラミング入門 - 東京大学 数理・情報教育研究センターGoogleColabで学習出来るようになっています。練習問題も豊富です https://colab.research.google.com/github/utokyo-ip
Pythonプログラミング入門¶ ▲で始まる項目は授業では扱いません。興味にしたがって学習してください。 ノートブック全体に▲が付いているものもありますので注意してください。
指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが,github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない).プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー
自分がよく使用する日本語自然言語処理のテンプレをまとめたものです。 主に自分でコピペして使う用にまとめたものですが、みなさんのお役に立てれば幸いです。 環境はPython3系、GoogleColaboratory(Ubuntu)で動作確認しています。Pythonの標準機能とpipで容易にインストールできるライブラリに限定しています。機械学習、ディープラーニングは出てきません!テキストデータの前処理が中心です。 前処理系 大文字小文字 日本語のテキストにも英語が出てくることはあるので。 s = "Youmou" print(s.upper()) # YOUMOU print(s.lower()) # youmou 全角半角 日本語だとこちらのほうが大事。 全角半角変換のライブラリはいくつかありますが、自分はjaconv派。 MIT Licenseで利用可能です。 import jaco
Information 2024/1/8: pandas ,Polars など18を超えるライブラリを統一記法で扱える統合データ処理ライブラリ Ibis の100本ノックを作成しました。長期目線でとてもメリットのあるライブラリです。こちらも興味があればご覧下さい。 Ibis 100本ノック https://qiita.com/kunishou/items/e0244aa2194af8a1fee92023/2/12: 大規模データを高速に処理可能なデータ処理ライブラリPolars の 100本ノックを作成しました。こちらも興味があればご覧下さい。Polars 100本ノック https://qiita.com/kunishou/items/1386d14a136f585e504e はじめに この度、PythonライブラリであるPandasを効率的に学ぶためのコンテンツとして

はじめに 2020/8/12に発売されたImpracticalPython Projects: PlayfulProgramming Activities to Make You Smarterの日本語訳書である、「実用的でないPythonプログラミング」をひょんな事から献本していただく事になった。(訳者が同僚である) 実用的でないPythonプログラミング: 楽しくコードを書いて賢くなろう! 作者:ヴォーン,リー発売日: 2020/08/12メディア: 単行本 ありがちなプログラミング初学者向けの本から1段上がった中級者向けの良い本だと感じたので、当ブログでたまにやっている筆者、訳者に媚びを売るシリーズの一貫として、感想を記す。 書籍の概要 「実用的でないPythonプログラミング」は、想定する中級レベルのアルゴリズムの問題を例に取り、Pythonでの美しいコードの書き方や、コンピュ

Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? CS 448B Visualization (2020 Winter)は、Maneesh Agrawala氏による、Stanford大で行われた、データの可視化に関する体系的な講義です。 スタンフォード大の"CS 448B Visualization (2020 Winter)" がすごい。 データ可視化の体系的講義。どう図表に変換するかの理論、探索的データ分析、ネットワーク分析等の実践と盛り沢山。 スライドに加え、Observable(JavaScript),Colab(Python)どちらでも例を試せる。https://t.co/

データサイエンス100本ノック(構造化データ加工編)のPythonの問題を解いていきます。この問題群は、模範解答ではpandasを使ってデータ加工を行っていますが、私達は勉強がてらにNumPyの構造化配列を用いて処理していきます。 次回記事(#2) はじめにPythonでデータサイエンス的なことをする人の多くはpandas大好き人間かもしれませんが、実はpandasを使わなくても、NumPyで同じことができます。そしてNumPyの方がたいてい高速です。 pandas大好き人間だった僕もNumPyの操作には依然として慣れていないので、今回この『データサイエンス100本ノック』をNumPyで操作することでpandasからの卒業を試みて行きたいと思います。 今回は8問目までをやっていきます。 今回使うのはreceipt.csvだけみたいです。初期データは以下のようにして読み込みました(データ型

English version 要約dockerはデフォルトでセキュリティ機構(Spectre脆弱性の対策)を有効にします。この影響で、RubyやPythonのようなインタプリタは速度が劣化します。特にCPU律速なプログラムで顕著に遅くなります(実行時間が倍くらいになることがあります)。 現象Rubyで1億回ループするコードを、直接ホスト上で実行する場合と、docker上で実行する場合で実行時間を比較してみます。 直接ホスト上で実行した場合: $ruby -ve 't = Time.now; i=0;while i<100_000_000;i+=1;end; puts "#{ Time.now - t } sec"'ruby 2.7.1p83 (2020-03-31 revision a0c7c23c9c) [x86_64-linux] 1.321703922 secdocker
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く