Googleが研究の一環で提供しているColaboratoryを試してみました。 Jupyterと同じようなGUIでPythonのプログラムを実行可能で、GPUも使えます。 Jupyterと同様に、先頭に「!」を書くことで、Linuxのコマンドを実行可能であり、「!pip」「!conda」「!apt-get」などで機能を追加できます。 実行結果をファイルシステム上に保管でき、共有リンクを使って取り出せます。 ただし、12時間経過すると強制終了されて、ファイルは失われます。 しかし、Notebookが動いている仮想マシンにGoogleドライブをマウント可能であり、これにより、実行結果をGoogleドライブ上のファイルとして保管できます。 Deep Learningでは、途中の状態をファイルに保管して、そこからResumeできるようにプログラムを書くことが多いので、12時間で一度強制終了しても

新たな教育プログラム「DL4US」が開始しています。 2019年5月に、松尾研究室の新たなディープラーニングの無料教材「DL4US」が公開されています。「Deep Learning基礎講座演習コンテンツ」のバージョンアップ版の位置付けなので、今から学習する方はこちらに取り組んだ方が良いかと思います。Dockerを使った環境構築方法を紹介している記事を書いたので、もし良ければ以下記事参照下さい。 Deep Learning基礎講座演習コンテンツが無料公開 以下のようなサイトが無料公開されていました。 学習に自由に使用してよいとのことです。ただ、肝心の使用方法が詳しく書いてないので、初心者には環境構築が厳しく、簡単に環境構築できる人にとっては、知っている内容のところが多い気がして、内容が良いだけにもったいなと感じました。 そこで、ちょっと初心者向けに環境構築の補足をしてみたいと思います。 そ
![東京大学の松尾研究室が無料公開している「Deep Learning基礎講座演習コンテンツ」の自主学習方法 - karaage. [からあげ]](/image.pl?url=https%3a%2f%2fcdn-ak-scissors.b.st-hatena.com%2fimage%2fsquare%2fa4eb2d91cb902c2c811e7c093d7f8838394826d3%2fheight%3d288%3bversion%3d1%3bwidth%3d512%2fhttps%253A%252F%252Fcdn.image.st-hatena.com%252Fimage%252Fscale%252Fcadd2fa36be798e6b375aad30f479092b61c1f74%252Fbackend%253Dimagemagick%253Bversion%253D1%253Bwidth%253D1300%252Fhttps%25253A%25252F%25252Fcdn-ak.f.st-hatena.com%25252Fimages%25252Ffotolife%25252Fk%25252Fkaraage%25252F20180127%25252F20180127134253.png&f=jpg&w=240)
1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く