強化学習(きょうかがくしゅう、英: reinforcement learning、RL)は、ある環境内における知的エージェントが、現在の状態を観測し、得られる収益(累積報酬)を最大化するために、どのような行動をとるべきかを決定する機械学習の一分野である。強化学習は、教師あり学習、教師なし学習と並んで、3つの基本的な機械学習パラダイムの一つである。 強化学習が教師あり学習と異なる点は、ラベル付きの入力/出力の組を提示する必要がなく、最適でない行動を明示的に修正する必要もない。その代わり、未知の領域の探索と、現在の知識の活用の間のバランスを見つけることに重点が置かれる[1]。 この文脈の強化学習アルゴリズムの多くは動的計画法を使用するため、この環境は通常マルコフ決定過程(MDP)として定式化される[2]。古典的な動的計画法と強化学習アルゴリズムとの主な違いは、後者はMDPの正確な数学的モデルの
人工知能の分野におけるニューラルネットワーク(英: neuralnetwork; NN、神経網)は、生物の学習メカニズムを模倣した機械学習手法として広く知られているものであり[1]、「人工ニューロン」と呼ばれる計算ユニットをもち、生物の神経系のメカニズムを模倣しているものである[1]。人間の脳の神経網を模した数理モデル[2]。模倣対象となった生物のニューラルネットワーク(神経網)とはっきり区別する場合は、人工ニューラルネットワーク (英: artificial neuralnetwork) と呼ばれる。 以下では説明の都合上[注釈 1]、人工的なニューラルネットワークのほうは「人工ニューラルネットワーク」あるいは単に「ニューラルネットワーク」と呼び、生物のそれは「生物のニューラルネットワーク」あるいは「生物の神経網」、ヒトの頭脳のそれは「ヒトのニューラルネットワーク」あるいは「ヒトの神
1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く