今回は、画像認識の精度向上に有効な データ拡張(Data Augmentation) を実験してみた。データ拡張は、訓練データの画像に対して移動、回転、拡大・縮小など人工的な操作を加えることでデータ数を水増しするテクニック。画像の移動、回転、拡大・縮小に対してロバストになるため認識精度が向上するようだ。音声認識でも訓練音声に人工的なノイズを上乗せしてデータを拡張するテクニックがあるらしいのでそれの画像版みたいなものだろう。 ソースコード test_datagen2.py test_datagen3.py ImageDataGeneratorの使い方 #3 -GithubのIssuesでTODOを管理し始めた ImageDataGenerator Kerasには画像データの拡張を簡単に行うImageDataGeneratorというクラスが用意されている。今回は、この使い方をまとめておきた

ImageDataGenerator ImageDataGeneratorクラス keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0.0, width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0, zoom_range=0.0, channel_shift_range=0.0, fi
概要CNN の学習を行う場合にオーグメンテーション (augmentation) を行い、学習データのバリエーションを増やすことで精度向上ができる場合がある。 Keras の preprocessing.image モジュールに含まれる ImageDataGenerator を使用すると、リアルタイムにオーグメンテーションを行いながら、学習が行える。 キーワード ImageDataGenerator オーグメンテーション (augmentation) 関連記事 具体的な使い方は以下を参照。 pynote.hatenablog.com 概要 キーワード 関連記事 ImageDataGenerator 基本的な使い方 オーグメンテーションの種類 回転する。 上下反転する。 左右反転する。 上下平行移動する。 左右平行移動する。 せん断 (shear transformation) する。 拡
1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く