KERAS 3.0 RELEASED A superpower for ML developers Keras is a deep learningAPI designed for human beings, notmachines. Keras focuses on debugging speed, code elegance & conciseness, maintainability, and deployability. When you choose Keras, your codebase is smaller, more readable, easier toiterate on. inputs = keras.Input(shape=(32, 32, 3)) x = layers.Conv2D(32, 3, activation="relu")(inputs) x =
BigQuery isGoogle Cloud's fully managed, petabyte-scale, and cost-effective analytics data warehouse that lets you run analytics over vast amounts of data in near real time. With BigQuery, there's no infrastructure to set up or manage, letting you focus on finding meaningful insights usingGoogleSQL and taking advantage of flexible pricing models across on-demand and flat-rate options.Go to the
General Concepts¶ matplotlib has an extensive codebase that can be daunting to many new users. However, most of matplotlib can be understood with a fairlysimple conceptual framework and knowledge of a few important points. Plotting requires action on a range of levels, from the most general (e.g., ‘contour this 2-D array’) to the most specific (e.g., ‘color this screen pixel red’). The purpose of
Keras:Pythonの深層学習ライブラリ Kerasとは Kerasは,Pythonで書かれた,TensorFlowまたはCNTK,Theano上で実行可能な高水準のニューラルネットワークライブラリです. Kerasは,迅速な実験を可能にすることに重点を置いて開発されました. アイデアから結果に到達するまでのリードタイムをできるだけ小さくすることが,良い研究をするための鍵になります. 次のような場合で深層学習ライブラリが必要なら,Kerasを使用してください: 容易に素早くプロトタイプの作成が可能(ユーザーフレンドリー,モジュール性,および拡張性による)CNNとRNNの両方,およびこれらの2つの組み合わせをサポートCPUとGPU上でシームレスな動作 Keras.ioのドキュメントを読んでください. KerasはPython 2.7-3.6に対応しています. ガイドライン ユーザー
Chainer – A flexible framework of neuralnetworks¶ Chainer is a powerful, flexible and intuitive deep learning framework. Chainer supports CUDA computation.It only requires a fewlines of code to leverage aGPU.It also runs on multipleGPUs with little effort. Chainer supports variousnetwork architectures including feed-forwardnets, convnets, recurrentnets and recursivenets.It also supports
Functions¶ Chainer provides variety of built-in function implementations in chainer.functions package. These functions usually return a Variable object or a tuple of multiple Variable objects. For a Variable argument of a function, an N-dimensional array can be passed if you do not needits gradient. Some functions additionally supportsscalar arguments.Note Functions implemented in Chainer consi
Get essential customer insights. Get a complete understanding of your customers across devices and platforms.Google Analytics gives you the tools, free of charge, to understand the customer journey and improve marketing ROI. Get started today Unlock customer-centric measurement. Understand how your customers interact across your sites and apps, throughout their entire lifecycle. Get smarter insig
1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く