先日のことですが、こんなことを放言したら思いの外伸びてしまいました。 データ可視化は一時期物凄く流行った割に今はパッとしない印象があるんだけど、それは結局のところデータ可視化が「見る人に『考えさせる』仕組み」だからだと思う。現実の世の中では、大半の人々は自分の頭で考えたくなんかなくて、確実に当たる託宣が欲しいだけ。機械学習やAIが流行るのもそれが理由— TJO (@TJO_datasci) 2024年8月28日 これはデータサイエンス実務に長年関わる身としてはごくごく当たり前の事情を述べたに過ぎなかったつもりだったのですが、意外性をもって受け止めた人も多ければ、一方で「あるある」として受け止めた人も多かったようです。 基本的に、社会においてある技術が流行って定着するかどうかは「ユーザーから見て好ましいかどうか・便利であるかどうか」に依存すると思われます。その意味でいうと、データ分析技術にと

株式会社セキュアベースは、サイバーリスクの可視化とその対策を支援する、サイバーセキュリティ対策の専門会社です。
データの可視化はなぜ必要なのでしょうか。それは、そのデータを生み出している事象をより正確に理解したり、機械学習での予測に用いる際に、使うべきデータを適切に選んだりするためです。そのためにはまず、データを可視化することによって、データの大まかな特徴をつかんだり、データ同士の相関関係を知ることが必要なのです。 さて、Pythonでデータを可視化する際には、まず、Pandasでデータを集計・加工します。その上で、matplotlib(マットプロットリブ)や今回ご紹介するseaborn(シーボーン)というライブラリで可視化を行います。seabornは特に、手軽に美しく可視化ができるライブラリなので、本稿でseabornがいかに魅力的なライブラリであるかを学びましょう。 seabornの特徴 seabornとは、Pythonのデータ可視化ライブラリで、同じPythonの可視化ライブラリであるmatp

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。AmazonQuickSight のビジュアルタイプAmazonQuickSight では、データを表示するために使用できる幅広いビジュアルタイプが提供されます。このセクションの各トピックで、各ビジュアルタイプの機能の詳細を確認してください。 メジャーとディメンション メジャーという用語は、ビジュアル内の測定、比較、集計に使用する数値を表します。「メジャー」は、製品コストなどの数値フィールド、または任意のデータ型のフィールドで集計された数値 (トランザクション ID 数など) を指します。 ディメンションまたはカテゴリという用語は、項目 (製品など) または測定に関連付けられ、測定を分割するために使用できる属性であるテキストまたは日付フィールドを指します。例え
2021/9/10 追記: 改めて更新された話を統合して整理して書き直しました. 以降はこちらを参考にしてください: ill-identified.hatenablog.com 2021/1/15 追記: RStudio 1.4 がリリースされたのでなるべくアップデートしましょう 2020/12/06 追記: Japan.R で今回の話の要約+新情報を『Mac でもWindows でも, PNG でもPDF でもRのグラフに好きなフォントで日本語を表示したい (2020年最終版)/Display-CJK-Font-in-Any-Gpraphic-Device-and-Platform-2020 - Speaker Deck』として発表した. ハイライトは「近々出るRStudio 1.4 があれば fontregisterer はほぼいらなくなる」 2020/10/31 追記: geom

Bokeh documentation# Bokeh is aPython library forcreating interactive visualizations for modern web browsers.It helps youbuild beautiful graphics, ranging fromsimple plots to complex dashboards with streaming datasets. With Bokeh, you cancreateJavaScript-powered visualizations without writing anyJavaScript yourself. Finding the right documentation resources# Bokeh’s documentation consists

(An English translation is available here.)Pythonでデータ分析をする際に、欠損値の出現パターンを簡単に可視化する方法を紹介します。 はじめにデータ分析をする際に、欠損値に対処する必要があります。方法は様々あります1が、対処法を考える前に、欠損値の数や出現パターンを知る必要があります。この記事では、Pythonを用いてデータ分析をする際に、欠損値の出現パターンを簡単に可視化する方法を紹介します。 なお、この記事で紹介する方法については、私のGitHub repoにJupyternotebookをアップロードしてあります。下のバッジをクリックすると、Binderで実行できます。 前提 以下、Kaggleから入手できるTitanicのtrain datasetを例として紹介します。以下のコードと実行結果があるものとします。

本ページでは、Python のデータ可視化ライブラリ、Seaborn (シーボーン) を使ってヒートマップを出力する方法を紹介します。 Seaborn には、ヒートマップの可視化を行うメソッドとして seaborn.heatmap と seaborn.clustermap の 2 つが実装されています。seaborn.heatmap は通常のヒートマップを出力しますが、seaborn.clustermap は、クラスタ分析を行い、デンドログラムとともにヒートマップを出力します。 heatmap: ヒートマップの可視化 seaborn.heatmap メソッドは、色の濃淡や色相でデータの密度や値の分布を可視化します。 seaborn.heatmap の使い方 seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None,
seaborn.heatmap# seaborn.heatmap(data, *, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt='.2g', annot_kws=None,linewidths=0,linecolor='white', cbar=True, cbar_kws=None, cbar_ax=None, square=False, xticklabels='auto', yticklabels='auto', mask=None, ax=None, **kwargs)# Plot rectangular data as a color-encoded matrix. This is an Axes-level function and will draw the hea
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く