この記事は「データ構造とアルゴリズム Advent Calendar 2020」16日目の記事です。 15日目の記事はyurahunaさんの「木分解上の動的計画法」で、 17日目の記事はtsukasa__diaryさんの「Lawler の K-Best 列挙アルゴリズム」です。 この記事内で使用しているプログラムやそのテストプログラムは全て以下のGitHubリポジトリで閲覧可能です。プログラムの詳細に興味がある方はこちらをご覧ください(ついでにStarを押していってくれると喜びます🙂)。Github: ashiba/Imprementation_of_IKERUKANA: Momotaro Dentetsu is a game. 変更履歴 2020/12/21に「最終的に貧乏神が付かない移動方法 ~貧乏神持ちの場合~」, 「最終的に貧乏神が付かない移動方法 ~貧乏神がついていない場合~

銀行員待行列(Banker's deque)、二つのリストで構成奴~~wwwww 入奴と出奴~wwwwwwwww ↓入奴 三(^o^)ノ [(^o^)ノ, (^o^)ノ, (^o^)ノ] ヽ(^o^)三 [ヽ(^o^), ヽ(^o^), ヽ(^o^)] ↑出奴 追加は入奴にcons、取り出しは出奴にuncons奴~wwwリストなので基本定数時間奴~wwwwww リスト枯渇防止の為、リストの長さに以下の条件課奴~~~wwwwww length (入奴) <= length (出奴) * 3 + 1 length (出奴) <= length (入奴) * 3 + 1 条件充足不能場合、|length (入奴) - length (出奴)| <= 1なるよう余剰分反転後短い側の末尾に結合して調整奴~wwwww時間計算量O(length (入奴) + length (出奴))必要~~~~wwww
目次 はじめに 解析結果についての解説 ファイナルファンタジーIV ファイナルファンタジーV ファイナルファンタジーVI ドラゴンクエストV ドラゴンクエストVI ドラゴンクエストI・II ドラゴンクエストIII ロマンシング サ・ガ2 ロマンシング サ・ガ3技術資料 ファイナルファンタジーIV ファイナルファンタジーV ファイナルファンタジーVI ドラゴンクエストV ドラゴンクエストVI ドラゴンクエストI・II ドラゴンクエストIII ロマンシング サ・ガ2 ロマンシング サ・ガ3 今後の予定 おわりに はじめにゲームの内部で起こっている処理を推測するのはなかなか難しいものです。ユーザーサイドから見れば、ゲームの内部処理はほとんど「ブラックボックス」のようなものです。ユーザーサイドでは「(内部で複雑な処理が行われた末の)最終結果」しかわかりませんし、ゲーム中の様々な要素(各種パラメ
C言語標準ライブラリの乱数rand( )は質に問題があり、禁止している学会もある。 他にも乱数には様々なアルゴリズムがあるが、多くのものが問題を持っている。 最も多くの人に使われている乱数であろう Visual Basic の Rnd の質は最低である。 そもそも乱数とは 乱数とは、本来サイコロを振って出る目から得られるような数を意味する。 このような乱数は予測不能なものである。 しかし、計算機を使って乱数を発生させた場合、 次に出る数は完全に決まっているので、予測不能とはいえない。 そこで、計算機で作り出される乱数を疑似乱数(PRNG)と呼び区別することがある。 ここでは、特にことわらない限り乱数とは疑似乱数のことを指すとする。 計算機でソフト的に乱数を発生させることの最大のメリットは、 再現性があることである。 初期状態が同じであれば、発生する乱数も全く同じものが得られる。 このことは
統計的機械学習入門(under construction)機械学習の歴史pptpdf歴史以前人工知能の時代 実用化の時代 導入pptpdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 次元の呪い 損失関数, bias, variance, noise データの性質数学のおさらいpptpdf 線形代数学で役立つ公式 確率分布 情報理論の諸概念 (KL-divergenceなど) 線形回帰と識別pptpdf 線形回帰 正規方程式 正規化項の導入 線形識別 パーセプトロン カーネル法pptpdf 線形識別の一般化 カーネルの構築法 最大マージン分類器 ソフトマージンの分類器 SVMによる回帰モデル SVM実装上の工夫 クラスタリングpptpdf 距離の定義 階層型クラスタリング K-means モデル推定pptpdf 潜在変数のあるモデルEMアル
作成日:2004.05.04 修正日:2012.09.01 このページは 2003年の9/11、9/28 の日記をまとめて作成。 はじめに PowerPC 系やAlpha などには population count と呼ばれるレジスタ中の立っているビット数を数える命令が実装されている。 集合演算を行うライブラリを実装したい場合などに重宝しそうな命令である。 職場でこの population count 命令について話をしているうちにビットカウント操作をハードウェアで実装するのは得なのか?という点が議論になった。CPU の設計をできるだけシンプルにするためには、複雑で使用頻度の低い命令は極力減らした方がよい。 例えば SPARC は命令セット中にビットカウント演算があるが、CPU 内には実装しないという方針をとっている(population 命令を実行すると不正命令例外が発生し、それを
「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」:最強最速アルゴリズマー養成講座(1/3 ページ) 典型的なアルゴリズムをたくさん知っている人間が最強か――? いいえ、典型的なアルゴリズムを知らなくても、違ったアプローチで答えに迫る方法はいくらでも存在します。短い実行時間で正確な答えを導き出せるかを考える習慣をつけましょう。 アルゴリズマー養成講座と銘打ってスタートした本連載。もしかすると読者の方の興味は、はやりのアルゴリズムや汎用的なアルゴリズムを知ることにあるのかもしれません。しかし、今回は、いわゆる「典型的なアルゴリズム」を用いずに進めていきたいと思います。 なぜ典型的なアルゴリズムを用いないのか。それは、典型的なアルゴリズムばかりを先に覚え、それだけでTopCoderなどを戦っていこうとした場合、それに少しでもそぐわない問題が出た場合に、まったく太刀打ちできなくなってしまう

ちまたの競馬予想会社のうさん臭さは、「そんなに儲かるならなぜ自分で買わない」という言葉で表されるが、ほんとに儲かる人間はやはり自分で馬券を買っていることを証明した事件だと言える。 asahi.com(朝日新聞)が競馬の配当160億円隠す 英国人社長のデータ分析会社という記事を報じているが、新聞紙面ではその隣に関連記事も掲載されているので、これを引用する。 「なぜそんなに稼げた - 3連単を分散買い」(2009年10月9日付朝日新聞より) ユープロ関係者らによると、同社は、天候や出走馬の血統、騎手などの各データを入力、解析する競馬必勝プログラムを使い、高確率で配当金を得ていたという。だが、億単位の資金を使い、ほとんどの組み合わせの馬券を買うという、一般の競馬ファンにはまねできないやり方だった。 05年設立の同社が目をつけたのは、「3連単」という馬券。1着から3着までを順番通り当てるもので、配
問題 xxxx=yyyy という形式のデータをたくさん受け取り、等しいもの同士をグルーピングするプログラムを書いてください。データは標準入力から与え、グルーピングした結果は { xxxx, yyyy } のように集合のような形式で標準出力に出すことにします。以下に入力と出力の組の例を示します。グループ同士の出力順は問いませんが、グループの中の各要素は適宜ソートしてください。 ◆入力1 b=d A=B b=a B=C c=b D=A◆出力1 { a, b, c, d } { A, B, C, D }◆入力2 Alice=Alice Robert=Bob Liz=Beth Lisa=Liza Bess=Beth Elizabeth=Lisa Eliza=Liza Bess=Elizabeth◆出力2 { Bob, Robert } { Alice } { Bess, Beth, Eliza,
画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。本エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

各評価基準を簡単に分析してみると、こんな感じだ。ホストドメインの信用度/オーソリティこの要素については、「Florida」アップデート(2003年11月)まで、ほとんどのSEO業者が真剣に考えていなかったと思う。でもFloridaアップデートの後、あっという間に大勢が知るところとなった。その後じわじわと影響力を強めてから、この2年で再び重要度が急上昇し、グーグルで高い検索順位を得る上で支配的な要因となった。 ただし、「キーワードに完全一致するドメイン名+さまざまなルートドメイン名からの大量のアンカーテキスト」といった手法ではもう、Wikipedia、Amazon、BBCに時たま顔を出すページを凌ぐことはできない、と言っているわけじゃない。要は、こういったオーソリティサイトが一段と重んじられるようになったということだ。 僕らはつい数日前から、Technoratiのようなオーソリティサイトの
昨年から続いているアルゴリズムイントロダクション輪講も、早いもので次は18章です。18章のテーマはB木(B Tree, Bツリー) です。B木はマルチウェイ平衡木(多分木による平衡木)で、データベースやファイルシステムなどでも良く使われる重要なデータ構造です。B木は一つの木の頂点にぶら下がる枝の本数の下限と上限を設けた上、常に平衡木であることを制約としたデータ構造になります。 輪講の予習がてら、B木をPython で実装してみました。ソースコードを最後に掲載します。以下は B木に関する考察です。 B木がなぜ重要なのか B木が重要なのは、B木(の変種であるB+木*1など)が二次記憶装置上で効率良く操作できるように設計されたデータ構造だからです。データベースを利用するウェブアプリケーションなど、二次記憶(ハードディスク)上の大量のデータを扱うソフトウェアを運用した経験がある方なら、いかにディ
というのを作ったので自己紹介します。 2月頃から、コンピュータでアニメ顔を検出&解析する方法をいろいろ試しつつ作っていて、その成果のひとつとして、無理やり出力したライブラリです。 はじめに はじめにざっとライブラリの紹介を書いて、あとのほうでは詳細な処理の話を僕の考えを超交えつつグダグだと書きたいと思います。 Imager::AnimeFaceでできること Imager::AnimeFaceは、画像に含まれるアニメキャラクター的な人物の顔の位置を検出し、さらに目や口など顔を構成する部品位置や大きさの推定、肌や髪の色の抽出を簡単に行うことができるライブラリです。 これらが可能になると、 画像から自動でいい感じのサムネイルを作成できる 動画から自動でいい感じのサムネイルを作成できる 自動的にぐぬぬ画像が作れる 自動的に全員の顔を○○にできる 顔ベースのローカル画像検索 など、最新鋭のソリューシ

やっと、Yコンビネータが何を意味するものなのか、どういう意義があるのかがわかりました。 名前を使わず再帰ができますよ!というだけのものじゃなかったのですね。 まずλありき 関数の話をしたいのです。 そのとき、いちいち hoge(x) = x * 2 としてhogeを・・・、とか名前をつけて話を進めるのがめんどうなので、関数を値としてあらわすと便利ということで、λという値を定義するのです。 そうすると、上のhoge関数なんかはλ(x)(x*2)などとあらわせますが、引数をあらわすのに()を使うといろいろまぎらわしいので、 λx.x*2 のように表記します。 というのがλ。 このとき、λになにかわたされたら、引数としてあらわされる部分を単純におきかえます。 (λx.x*2)y とあったら、xの部分をyでおきかえて (λx.x*2)y → y * 2 となります。λの引数部分を与えられた引数で置

集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 -Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ
ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基本技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdfPDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ
適当な単語群を含む辞書があったとします。「京都の高倉二条に美味しいつけ麺のお店がある」*1という文章が入力として与えられたとき、この文章中に含まれる辞書中のキーワードを抽出したい、ということがあります。例えば辞書に「京都」「高倉二条」「つけ麺」「店」という単語が含まれていた場合には、これらの単語(と出現位置)が入力に対しての出力になります。 この類の処理は、任意の開始位置から部分一致する辞書中のキーワードをすべて取り出す処理、ということで「共通接頭辞検索 (Common Prefix Search)」などと呼ばれるそうです。形態素解析、Wikipedia やはてなキーワードのキーワードリンク処理などが代表的な応用例です。 Aho Corasick 法 任意のテキストから辞書に含まれるキーワードをすべて抽出するという処理の実現方法は色々とあります。Aho Corasick 法はその方法のひと

人工知能基本問題研究会 (SIG-FPAI)でタイトルの題目で一時間ほど話してきました。 発表資料 [pptx] [pdf] 話した内容は - 自然言語処理における特徴ベクトルの作り方と、性質 - オンライン学習, Perceptron, Passive Agressive (PA), Confidence Weighted Learning (CW) 確率的勾配降下法 (SGD) - L1正則化, FOLOS - 索引を用いた効率化, 全ての部分文字列を利用した文書分類 で、スライドで70枚ぐらい。今までの発表とかぶっていないのはPA CW SGD FOLOSあたりでしょうか オンライン学習、L1正則化の話がメインになっていて、その両方の最終形の 確率的勾配降下法 + FOLOSの組み合わせは任意の損失関数に対してL1/L2正則化をかけながらオンライン学習をとても簡単にできるという一昔前

リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く