「知識ゼロから学べる」をモットーにした機械学習入門連載の第5回。いよいよ今回から、「Yes/No」や「スパムかどうか」といった“分類”予測を扱います。これを実現する代表的な手法が「ロジスティック回帰」です。図を使って仕組みや考え方をやさしく学び、Pythonとscikit-learnでの実装も体験します。初めての人でも安心して取り組める内容です。 連載目次 「この商品は売れるか/どうか?」「この顧客はサービスを解約しそうか/どうか?」―― こうしたYes/Noの判断(=分類)をデータから予測したい場面は、ビジネスや日常でたくさんありますよね? 今回は、このような際に役立つ、機械学習の代表的な手法であるロジスティック回帰による“分類”について学んでいきましょう。 具体的には、ロジスティック回帰の概要から、その仕組み、そしてPythonプログラミングによるモデルの実装と評価まで取り組み、“分類

Stanislav Kirdey, William High Imagine having togo through 2.5GB (not often, but does happen time to time)log entries from a failed softwarebuild — 3 millionlines — to search for a bug or a regression that happened online 1M.It’s probably not even doable manually! However, one smart approach to makeit tractable might be to diff thelines against a recent successfulbuild, with the hope that

1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く