こんにちは、Data&Analysis部(D&A)です。 D&Aでは週1回、機械学習の勉強会を開催しており、本記事は、勉強会の内容を生成AIを活用して記事にまとめたものです。 ※勉強会内容公開の経緯はこちら ※過去の勉強会は「社内勉強会」タグからもご覧いただけます。 概要 GraphRAGの概要 RAGの概要と課題 GraphRAGの基本的な考え方 ナレッジグラフとは アルゴリズムの概要 標準的なGraphRAGMicrosoftによるGraphRAG GraphRAGの評価 ナレッジグラフの評価 GraphRAGの評価 ナレッジグラフ / GraphRAGの課題 ナレッジグラフの課題 GraphRAGの課題 参考文献 概要 今回の勉強会では、ナレッジグラフ(後述)とRAG(Retrieval-Augmented Generation)を組み合わせた技術であるGraphRAGについて調査

導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 RAGのシステムでは一般的に、断片化されたテキストをEmbeddingによってベクトル化し、関連する情報を検索、そして質問に回答するという形式が採用されるかと思います。 しかし本来、RAGのデータソースは断片化されたテキストに限定はされていません。その一つとして、Knowledge Graph(知識グラフ)というものが存在します。本記事では、そんなKnowledge Graphを利用した新しいRAGのシステム、GNN-RAGについて紹介します。 サマリー GNN-RAGは、Knowledge Graphから関連するデータの取得にGNNを使用します。この手法を利用することで、既存のKnowledge Gr

1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く