私は高校入試で、数学以外の科目は 80~90点台でしたが、数学だけ55点でした……(合格者平均は約70点)。しかし試行錯誤の結果、定期テストで平均より少し上となり、評定平均4、模試偏差値65くらいを取れるようになりました。その方法について紹介します。(高校生記者・みかみ=3月卒業) なぜ苦手か分析してみたら数学が苦手だった原因を分析してみました。「解けない問題の解答を丸暗記しようとしていたこと」「解答用紙やノートがうまく使えないこと」「暗記するなという言葉を曲解し、復習せず思考停止していたこと」とわかりました。そこで、主に次の4つの方法を実践してみました。 【1】自分の言葉に変えてみる まず、私には数学特有の言い回しが難しかったので、問われた内容を自分の言葉に変えて、問題集に解答の流れを書き込みました。そしてセルフレクチャーという方法で、問題を見て瞬時に答えが導き出せるようにしました。

高校で数学を「捨てる」と重要な脳内物質量が減少すると判明!数学を捨てたつもりなのに脳の可能性のほうが失われていた /Credit:Canva . ナゾロジー編集部英国では、学生は16歳になると数学を学ばないという選択が可能になります。 英国では大学入学にあたって必要な科目を3つに絞ることが可能であり、文系を目指す場合、ある時点で数学を完全に「捨てる」ことができるんです。 一方、近年の実験心理学の進歩により、特定の学習行動が脳機能に様々な影響を与えることが明らかになってきました。 最も著しい例としては、多国籍語の会話スキルがある人は、認知症にかかりにくいとする研究結果です。 そこで今回、オックスフォード大学の実験心理学部門の研究者たちは、思春期における数学の学習が脳に与える生物学的な変化を調べることにしました。 実験にあたっては14歳から18歳の133人の学生たちの数学学習の有無を調べると

今さらながら「数学的ゾンビ」のまとめを見た。 「数学ゾンビだ…」分数の約分の問題は完璧に解ける息子さん、意味を理解しないまま計算してたことがわかった時の話 https://togetter.com/li/1610041 約分の意味はひとまず置いといて、この中に「3を3分の1で割るとなんで9になるのか」という話が出てくる。要は1/3で割ることが なぜ3を掛けることになるのか、という話である。 これに対しては、コメント欄で「3から3分の1が何回引けますか? ってのが割り算の意味」という説明が多くの賛同を得ていた。 これ、数字の上では間違っていない。一見分かりやすい。しかし符号がマイナスになったり、割られる数の絶対値<割る数の 絶対値になった時につまずくのでは?と感じた。個人的には「割る数」の考え方が逆な気がするし、割り算の本質に迫っていない気がする。 この考え方だと、例えば具体的に単位がついた

記録綾 @study__memory 塾講師で得た一番の経験は、世の中には自分が誰にでも出来る簡単なことだと思ってることをいくら頑張っても出来ない人がいて、いくら丁寧に時間をかけて教えても理解出来ない人がいて、自分もまた優秀な人からそう思われているかもしれないということ 2019-10-06 16:48:45

結城浩 / Hiroshi Yuki @hyuki 結城が知っている、数学が得意な人の特徴。 ・ルールを守るのはやぶさかではない。 ・ルールの境界(限界)を理解しようと思う。 ・一度定めたルールを適当な理由で変えると怒る。 ・ルールは便宜上定めたものだとよく理解していて、だからこそ(適切な理由がない限り)厳密に守ろうとする。 2015-03-09 17:54:52 TOKAGE @tokageiro @hyuki なるほど、ルールへの態度というのはわかりやすいですね。数学が好きじゃない人には、「数学はカタイ」とか言われることがありますが、私は数学ってすごーく自由で柔らかいと感じます。ルール次第でどんな世界でもつくれる自由があるからこそ、ルールは慎重に吟味するし、大切にする。 2015-03-09 18:10:16

数学嫌いはどこから生まれてくるのか? よく聞かれる「役に立たないから」なる理由は、実のところ良くて後付け悪くて言い訳であって、その実態は、算数や数学につまずいて分からなくなった人たちが、イソップ寓話のキツネよろしく「あのブドウ(数学)は酸っぱい(役に立たない)」と言い広めているのである。 ならば撃つべきは〈算数・数学のつまずき〉である。 以下に示すのは、小学校の算数から大学基礎レベルの数学まで、「つまずいて分からなくなる」箇所を集めて16のカテゴリーに分類したものである。 一度もつまずかず専門レベルまで一気に駆け上がることのできた一握りの天才を除けば、数学が得意な人も不得意な人もみなどこかでつまずいたであろう、さまざまな算数・数学の難所が挙げられている。 この分類が示そうとしていることのひとつは、同じ〈根っこ〉をもったつまずきが、小・中・高・大の各レベルで繰り返し出現することである。 たと

1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く