ブラックホールが合体するイメージ図/Sakkmesterke/Science Photo Library RF/Getty Images (CNN) 太陽百個分以上の質量を持つブラックホール同士の衝突と合体が観測されたとの研究結果を、国際研究チームが発表した。観測史上最大規模の合体とされる。 米国のレーザー干渉計重力波天文台(LIGO)がルイジアナ州リビングストンとワシントン州ハンフォードで運用する一対の観測装置が、二つのブラックホールの衝突で生じた重力波を検出した。この現象は「GW231123」と名付けられた。 アインシュタインは1915年に相対性理論の中で重力波の存在を予測したが、重力波は極めて微弱なため人間の技術では直接観測できないと考えていた。だが2016年にLIGOが初めてブラックホールの衝突による重力波を観測。貢献した科学者3人は翌年、ノーベル物理学賞を受賞した。 それ以来、L

2025年3月に、シカゴ大学の数学者であるユー・デン氏、ザハー・ハニ氏、シャオ・マ氏が、流体力学において「ヒルベルトの第6問題」を解決したとする論文を未査読論文リポジトリのarXivに掲載しました。論文は記事作成時点で査読中の状態ですが、このヒルベルトの第6問題が本当に解決したとすれば、物理学が大きく進化する可能性を秘めているといわれています。 [2503.01800] Hilbert's sixth problem: derivation of fluid equations via Boltzmann's kinetic theory https://arxiv.org/abs/2503.01800 Mathematiciansjust solved a 125-year-old problem, uniting 3 theories in physics | Live Scienc

故スティーブン・ホーキング博士、英ケンブリッジで(2016年10月19日撮影)。(c)Niklas HALLE'N / AFP 【5月28日 AFP】世界的に有名な英国の宇宙物理学者で、2018年に死去した故スティーブン・ホーキング(Stephen Hawking)博士の論文やさまざまな私物が、後世に保存されることになった。 英ケンブリッジ大学(Cambridge University)図書館と英国の博物館グループ「サイエンス・ミュージアム・グループ(Science Museum Group)」が、英政府との合意に基づき、420万ポンド(約6億5000万円)で博士ゆかりの品々を取得した。 1万ページに及ぶホーキング博士の科学論文やその他の文書などは、博士が死去した英東部の大学都市ケンブリッジ(Cambridge)に残される。 学術論文や、博士が出演したテレビ番組の台本などの1944~200

身の回りの「物質」と性質がわずかに異なる「反物質」の動きをレーザー光で操作することに成功したと、カナダ・ブリティッシュコロンビア大の百瀬孝昌教授らの国際チームが31日付の英科学誌ネイチャー電子版に発表した。構造や性質の詳細な分析が可能になるとしている。宇宙誕生時は物質と同数あったと考えられる反物質がその後、消滅した謎を解明するステップになるという。 反物質は、自然界の通常の物質と電気的な性質が逆になっている他は、基本的に同じ性質を持つとされる。特徴が詳しく分かれば、宇宙で物質だけが残った謎に迫れる可能性があるが、分析が難しかった。

【ネタバレあり】量子物理学者に「映画『TENET テネット』がどうすさまじいのか」を教えてもらった2020.09.29 20:0075,348 山田ちとら クリストファー・ノーラン監督の最新作『TENET テネット』、もう観ました? 観たけど複雑すぎてよくわからなかったのは筆者だけではなかったはず。 そこで、作中に何度も登場した「エントロピー」という言葉について調べてから再度観に行ったんですが、それでもまだまだわからなかったよ…!! ならばプロに解説していただくしか理解への道は拓けない。というわけで、『TENET テネット』の科学監修を担当された東京工業大学理学院物理学系助教の山崎詩郎先生にお話を伺ってきました。 山崎詩郎(やまざき・しろう) Photo: かみやまたくみ東京大学大学院理学系研究科物理学専攻博士課程修了。博士(理学)。量子物性の研究で日本物理学会第10回若手奨励賞を受賞。『

理化学研究所(理研)数理創造プログラムの横倉祐貴上級研究員らの共同研究チームは、量子力学[1]と一般相対性理論[2]を用いて、蒸発するブラックホールの内部を理論的に記述しました。本研究成果は、ブラックホールの正体に迫るものであり、遠い未来、情報[1]を蓄えるデバイスとしてブラックホールを活用する「ブラックホール工学」の基礎理論になると期待できます。 近年の観測により、ブラックホールの周辺のことについては徐々に分かってきましたが、その内部については、極めて強い重力によって信号が外にほとんど出てこられないため、何も分かっていません。また、ブラックホールは「ホーキング輻射[3]」によって蒸発することが理論的に示されており、内部にあった物質の持つ情報が蒸発後にどうなってしまうのかは、現代物理学における大きな未解決問題の一つです。 今回、共同研究チームは、ブラックホールの形成段階から蒸発の効果を直

未発見の謎の物質「暗黒物質」を探索している東京大や名古屋大、神戸大が参加する国際実験チーム「ゼノン」は17日、イタリアのグランサッソ国立研究所の地下にある施設で実施した実験で、想定外の事象を観測したと発表した。未知の素粒子を捉えた可能性があるという。暗黒物質である可能性は低いが、信号の特徴から素粒子物理学で存在が予想される粒子「アクシオン」かもしれず、東大などはさらに詳しく調べる。アクシオンも

「伝説の理論物理学者」とも呼ばれた、米プリンストン高等研究所のフリーマン・ダイソン名誉教授が28日、米ニュージャージー州プリンストンで死去した。96歳だった。同研究所が公表した。 【写真】フリーマン・ダイソンさん=ロイター 1923年、英南東部バークシャー生まれ。英ケンブリッジ大学などを経て米コーネル大大学院に入り、原爆開発のマンハッタン計画で中心的役割を果たしたハンス・ベーテ博士の下で物理学を学んだ。 朝永振一郎博士やリチャード・ファインマン博士らがそれぞれ提唱していた、素粒子論の基礎の「くりこみ理論」について、49年に「トモナガ・シュウィンガー・ファインマンの放射理論」と題した論文を発表。着想を一つにまとめて、完全性を証明する役割を果たした。この理論で朝永博士ら3人は65年、ノーベル物理学賞を受賞した。

日米欧などの国際共同研究グループが10日、銀河の中心にある巨大ブラックホールの撮影に初めて成功したと発表した。世界の8つの電波望遠鏡を連動させ、極めて解像度の高い巨大望遠鏡に見立てて観測した。ブラックホールの存在は間接的な証拠からわかっていたが、目に見える形で姿をとらえたことはなかった。謎に包まれた天体の解明につながるノーベル賞級の成果で、データ解析に使われた技術は新素材の開発や医療にも役立つ。

スイスのジュネーブ近郊にある欧州原子核研究機構(CERN)のATLAS検出器。ATLAS実験チームは今回、別の実験チームとともにヒッグス粒子の崩壊を観察した。(PHOTOGRAPH BY BABAK TAFRESHI, NATIONAL GEOGRAPHICCREATIVE) 物理学者たちは数十年前から、「神の素粒子」と呼ばれるヒッグス粒子を探してきた。宇宙を満たし、物質に質量を与えると考えられてきた粒子だ。ヒッグス粒子は2012年にようやく発見され、存在を予言した物理学者がノーベル賞を受賞した。そして今回、物理学者らがヒッグス粒子のボトムクォークへの崩壊を観察し、新たな洞察を得た。(参考記事:「「科学の大発見」はもうない?」) この研究は、ヒッグス粒子の崩壊を予測していた理論素粒子物理学にとっても、数十年がかりで実験装置を建造した欧州原子核研究機構(CERN)にとっても、非常に大きな業
南極のアムンゼン・スコット基地の地下深くにあるアイスキューブ・ニュートリノ観測所は世界最大のニュートリノ検出装置だ。(PHOTOGRAPH BY SVEN LIDSTROM, ICECUBE, NSF VIA THE NEW YORK TIMES) 南極点の地下約1600メートルのところでとらえられた閃光が、100年前から科学者たちを悩ませてきた宇宙の謎を解き明かし、ニュートリノを利用した新しい天文学を始動させるかもしれない。 1900年代初頭、物理学者のヴィクトール・ヘスは、宇宙から地球に高エネルギー粒子が降り注いでいることに気づいた。私たちが今日、宇宙線と呼んでいるものだ。それ以来、科学者たちは、すさまじい高エネルギー粒子を生み出す宇宙の加速器がどこにあるのか突き止めようとしてきた。 しかし、ほとんどの宇宙線は電荷をもち、宇宙空間のあちこちにある磁場によって進行方向を曲げられてしまう。
2013年の『スター・トレック イントゥ・ダークネス』で描かれたU.S.S.エンタープライズは、ワープ・ドライブによって銀河を高速移動する。(PHOTOGRAPH BY CBS, GETTY IMAGES)映画『スター・トレック』の世界では、有名なワープ・ドライブ(ワープ航法)のおかげで、銀河系の横断がいとも簡単だ。このフィクションのテクノロジーを使えば、人類やその他の文明は何百年もかけることなく、わずか数日で恒星間を移動できる。(参考記事:「『スター・トレック』がつくった未来」) 現実世界では、そこまでの高速移動は不可能だ。なぜなら、宇宙の仕組みを説明するアインシュタインの特殊相対性理論によると、光速より速く移動するものは存在しないから。 現行のロケット推進システムはこの法則に縛られているものの、野心的なエンジニアや物理学者が数多く、スター・トレックの宇宙移動に少しでも近づくための概念
アインシュタインが約100年前に存在を予言した「重力波」の観測に成功したと28日、イタリアなどの国際共同研究チームが発表した。重力波は2年前に米国で初観測され、今回が4回目。欧州で観測されたのは初めて。 重力波は、非常に重い天体が高速で運動すると、より強く発生する。今回の観測は8月14日。2015年に初めて重力波をとらえた米国2カ所にある観測施設「LIGO(ライゴ)」に加え、欧州の観測施設「Virgo(バーゴ)」でも同時に観測された。地球から18億光年離れた場所で太陽の31倍と25倍の重さの二つのブラックホールが、互いの周囲を回りながら合体して発生したとみられる。 Virgoは長さ3キロのパイプをL字形に直交させ、内部に通したレーザー光を使って重力波をとらえる巨大な装置。フランス、イタリアなど欧州の20カ国が参加してイタリアのピサ近郊に設置。観測開始からわずか2週間後に重力波をとらえた。

ウィーン大学とオーストリア科学アカデミーは、量子力学の対象となるミクロの世界において、ある時計の時刻を正確にすることによって、周囲の時計がその影響を受け、不正確になる効果があることを解明した。これは量子力学と一般相対性理論から導かれる根本的な効果であり、時間測定の物理的限界を示すものであるという。研究論文は、「米国科学アカデミー紀要(PNAS)」に掲載された。 この図のように、一般相対性理論では、空間のどのポイントでも他から影響を受けずに正確に時刻を測れる理想的な時計を考えることができる。しかし、量子力学も考慮に入れた場合、隣り合う時計同士は互いに独立ではなく、干渉しあって時間が不正確になる(出所:ウィーン大学) 日常的な世界では、時計によって周囲の時空が変化したり、ある時計が近くの時計に影響を及ぼしたりするといったことはないと考えられている。また、複数の時計を使えば、近接している複数の場

リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く