リクルートデータ組織のブログをはじめました。※最新情報はRecruit DataBlogをご覧ください。 Recruit DataBlogはこちら 汎用人型雑用AIの stakaya です。 たまたま数年前に社内のBLOGに書いたABテストのロジックのまとめ&比較記事を発掘したので、 このまま眠らせているのはもったいないぞと、 圧倒的もったいない精神を発揮し、シェアさせていただきます。 あの頃は私も若かった。 社内では”堅物・真面目・一途”で有名なものでして、下記文章がお硬いのはご勘弁ください。 はじめに本記事は、施策の評価手法としてしばしば用いられるA/Bテスト(A/B testing)について、できる限り背後にある仮定を明記した上で、まとめたものである。 A/Bテストとは、主にインターネットマーケティングにおける施策の良否を判断するために、2つの施策(通常、A・Bと記載)を比較す

いま注目すべきシリコンバレーの有名なIT企業は新規のデザインや機能が有効かどうかを検証するためにA/Bテストを行っています。 その一方で、日本の企業も含め、A/Bテストを本番環境で導入している企業は非常に少ないです。 加えて、日本で言われているA/Bテストと海外で言われているA/Bテストは少々異なるものだと感じています。 日本のA/Bテストはフォームの最適化やデザインの修正にとどまっている一方で、海外のA/Bテストはプロダクト開発のサイクルの一部分となっています。 プロダクト開発のサイクルの一部としてA/Bテストを取り入れるためには、大量のテストを定常的に回していく仕組みが必要となってきます。 そこでデータドリブンであると言われているようなシリコンバレーのIT企業は自社でA/Bテストの基盤を作成しています。 今回は社内A/Bテスト勉強会で発表するために、シリコンバレーの有名IT企業がどのよ

AgentforceHumans with Agents drive customer success together. Explore Agentforce

1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く